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In this Supplementary Material, we provide details
omitted in the main text.

• Section 1: cross-validation strategies (Section 3.2
of the main paper).

• Section 2: learning metrics for semantic similarity
(Section 3.1 of the main paper).

• Section 3: details on experimental setup (Sec-
tion 4.1 of the main paper).

• Section 4: implementation details (Section 4.1 and
4.2.3 of the main paper).

• Section 5: additional experimental results and anal-
yses (Section 4.2 of the main paper).

1. Cross-validation (CV) strategies
There are a few free hyper-parameters in our ap-

proach (cf. Section 3.2 of the main text). To choose the
hyper-parameters in the conventional cross-validation
(CV) for multi-way classification, one splits the train-
ing data into several folds such that they share the same
set of class labels with one another. Clearly, this strategy
is not sensible for zero-shot learning as it does not im-
itate what actually happens at the test stage. We thus
introduce a new strategy for performing CV, inspired
by the hyper-parameter tuning in [25]. The key differ-
ence of the new scheme to the conventional CV is that
we split the data into several folds such that the class
labels of these folds are disjoint. For clarity, we de-
note the conventional CV as sample-wise CV and our
scheme as class-wise CV. Figure 1(b) and 1(c) illustrate
the two scenarios, respectively. We empirically compare
them in Section 5.1. Note that several existing mod-
els [2, 7, 25, 34] also follow similar hyper-prameter tun-
ing procedures.
∗ Equal contributions

1.1. Learning semantic embeddings

We propose an optimization problem for learning
semantic embeddings in Section 3.2 of the main text.
There are four hyper-parameters λ, σ, η, and γ to be
tuned. To reduce the search space during cross-
validation, we first fix br = ar for r = 1, . . . ,R and
tune λ, σ. Then we fix λ and σ and tune η and γ.

2. Learning metrics for computing similari-
ties between semantic embeddings

Recall that, in Section 3.1 of the main text, the
weights in the bipartite graph are defined based on the
distance d(ac, br) = (ac − br)TΣ−1(ac − br). In this
section, we describe an objective for learning a more
general Mahalnobis metric than Σ−1 = σ2I . We fo-
cus on the case when R = S and on learning a diagonal
metric Σ−1 = MTM , where M is also diagonal. We
solve the following optimization problem.

min
M ,v1,··· ,vR

S∑
c=1

N∑
n=1

`(xn, Iyn,c;wc) (1)

+
λ

2

R∑
r=1

‖vr‖22 +
γ

2
‖M − σI‖2F , (2)

s.t. wc =

R∑
r=1

scrvr, ∀ c ∈ T = {1, · · · ,S}

where `(x, y;w) = max(0, 1 − ywTx)2 is the squared
hinge loss. The indicator Iyn,c ∈ {−1, 1} denotes
whether or not yn = c.

Again, we perform alternating optimization for min-
imizing the above objective function. At first, we fix
M = σI and optimize {v1, · · · ,vR} to obtain a rea-
sonable initialization. Then we perform alternating opti-
mization. To further prevent over-fitting, we alternately
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Figure 1: Data splitting for different cross-validation (CV) strategies: (a) the seen-unseen class splitting for zero-shot learning, (b)
the sample-wise CV, (c) the class-wise CV (cf. Section 3.2 of the main paper).

optimize M and {v1, · · · ,vR} on different but overlap-
ping subsets of training data. In particular, we split data
into 5 folds and optimize {v1, · · · ,vR} on the first 4
folds and M on the last 4 folds. We report results in
Section 5.5.

3. Details on the experimental setup
We present details on the experimental setup in this

section and additional results in Section 5.

3.1. Datasets

We use four benchmark datasets in our experiments.
The Animals with Attributes (AwA) dataset [18] con-
sists of 30,475 images of 50 animal classes. Along with
the dataset, a standard data split is released for zero-shot
learning: 40 seen classes (for training) and 10 unseen
classes. The second dataset is the CUB-200-2011 Birds
(CUB) [30]. It has 200 bird classes and 11,788 images.
We randomly split the 200 classes into 4 disjoint sets
(each with 50 classes) and treat each of them as the un-
seen classes in turn. We report the average results from
the four splits. The SUN Attribute (SUN) dataset [23]
contains 14,340 images of 717 scene categories (20 im-
ages from each category). Following [18], we ran-
domly split the 717 classes into 10 disjoint sets (each
with 71 or 72 classes) in a similar manner to the class
splitting on CUB. We note that some previous published
results [13, 25, 33, 34] are based on a simpler setting
with 707 seen and 10 unseen classes. For comprehen-
sive experimental comparison, we also report our results
on this setting in Table 3.

For the large-scale zero-shot experiment on the Ima-
geNet dataset [5], we follow the setting in [9, 22]. The
ILSVRC 2012 1K dataset [26] contains 1,281,167 train-
ing and 50,000 validation images from 1,000 categories
and is treated as the seen-class data. Images of unseen
classes come from the rest of the ImageNet Fall 2011 re-
lease dataset [5] that do not overlap with any of the 1,000
categories. We will call this release the ImageNet 2011
21K dataset (as in [9, 22]). Overall, this dataset contains
14,197,122 images from 21,841 classes, and we conduct
our experiment on 20,842 unseen classes1.

3.2. Semantic spaces

SUN Each image is annotated with 102 continuous-
valued attributes. For each class, we average attribute
vectors over all images belonging to that class to obtain
a class-level attribute vector.

ImageNet We train a skip-gram language model [20,
21] on the latest Wikipedia dump corpus2 (with more
than 3 billion words) to extract a 500-dimensional word
vector for each class. In particular, we train the model
using the word2vec package3 — we preprocess the cor-
pus with the word2phrase function so that we can di-
rectly obtain word vectors for both single-word and

1There is one class in the ILSVRC 2012 1K dataset that does not
appear in the ImageNet 2011 21K dataset. Thus, we have a total of
20,842 unseen classes to evaluate.

2http://dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2 on September
1st, 2015

3https://code.google.com/p/word2vec/

http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://code.google.com/p/word2vec/


multiple-word terms, including those terms in the Im-
ageNet synsets4. We impose no restriction on the vocab-
ulary size. Following [9], we use a window size of 20,
apply the hierarchical softmax for predicting adjacent
terms, and train the model with a single pass through
the corpus. As one class may correspond to multiple
word vectors by the nature of synsets, we simply aver-
age them to form a single word vector for each class. We
obtain word vectors for all the 1,000 seen classes and for
20,345 (out of 20,842) unseen classes. We ignore classes
without word vectors in the experiments.

3.3. Visual features

We denote features that are not extracted by deep
learning as shallow features.

Shallow features On AwA, many existing approaches
take traditional features such as color histograms, SIFT,
and PHOG that come with the dataset [18, 24, 31],
while others use the Fisher vectors [1, 2]. The SUN
dataset also comes with several traditional shallow fea-
tures, which are used in [13, 18, 25].

In our experiments, we use the shallow features pro-
vided by [18] , [14], and [23] for AwA, CUB, and SUN,
respectively, unless stated otherwise.

Deep features Given the recent impressive success
of deep Convolutional Neural Networks (CNNs) [17]
on image classification, we conduct experiments with
deep features on all datasets. We use the Caffe pack-
age [15] to extract AlexNet [17] and GoogLeNet [29]
features for images from AwA and CUB. Observing
that GoogLeNet give superior results over AlexNet on
AwA and CUB, we focus on GoogLeNet features on
large datasets: SUN and ImageNet. These networks
are pre-trained on the ILSVRC 2012 1K dataset [5, 26]
for AwA, CUB, and ImageNet. For SUN, the net-
works are pre-trained on the Places database [35], which
was shown to outperform the networks pre-trained on
ImageNet on scene classification tasks. For AlexNet,
we use the 4,096-dimensional activations of the penul-
timate layer (fc7) as features, and for GoogLeNet we
extract features by the 1,024-dimensional activations of
the pooling units following the suggestion by [2].

For CUB, we crop all images with the provided
bounding boxes. For ImageNet, we center-crop all im-
ages and do not perform any data augmentation or other
preprocessing.

4Each class of ImageNet is a synset: a set of synonymous terms,
where each term is a word or phrase.

3.4. Evaluation protocols on ImageNet

When computing Hierarchical precision@K
(HP@K), we use the algorithm in the Appendix of
[9] to compute a set of at leastK classes that are consid-
ered to be correct. This set is called hCorrectSet and
it is computed for each K and class c. See Algorithm 1
for more details. The main idea is to expand the radius
around the true class c until the set has at least K
classes.

Algorithm 1 Algorithm for computing hCorrectSet
for H@K [9]

1: Input: K, class c, ImageNet hierarchy
2: hCorrectSet← ∅
3: R← 0
4: while NumberElements(hCorrectSet) < K do
5: radiusSet ← all nodes in the hierarchy which are R

hops from c
6: validRadiusSet← ValidLabelNodes(radiusSet)
7: hCorrectSet← hCorrectSet ∪ validRadiusSet
8: R← R+ 1
9: end while

10: return hCorrectSet

Note that validRadiusSet depends on which classes
are in the label space to be predicted (i.e., depending on
whether we consider 2-hop, 3-hop, or All. We obtain the
label sets for 2-hop and 3-hop from the authors of [9,
22]. We implement Algorithm 1 to derive hCorrectSet
ourselves.

4. Implementation details
4.1. How to avoid over-fitting?

Since during training we have access only to data
from the seen classes, it is important to avoid over-fitting
to those seen classes. We apply the class-wise cross-
validation strategy (Section 1), and restrict the semantic
embeddings of phantom classes to be close to the seman-
tic embeddings of seen classes (Section 3.2 of the main
text).

4.2. Combination of attributes and word vectors

In Table 5 of the main text and Section 5.2 of this
material, we combine attributes and word vectors to
improve the semantic embeddings. We do so by first
computing src in eq. (2) of the main text for different
semantic sources, and then perform convex combination
on src of different sources to obtain the final src. The
combining weights are determined via cross-validation.



4.3. Initialization

All variables are randomly initialized, unless stated
otherwise. Other details on initialization can be found
in Section 3.2 of the main text and Section 2 and 4.5 of
this material.

4.4. ConSE [22]

Instead of using the CNN 1K-class classifiers di-
rectly, we train (regularized) logistic regression classi-
fiers using recently released multi-core version of LIB-
LINEAR [8]. Furthermore, in [22], the authors use the
averaged word vectors for seen classes, but keep for each
unseen class the word vectors of all synonyms. In other
words, each unseen class can be represented by multiple
word vectors. In our implementation, we use averaged
word vectors for both seen and unseen classes for fair
comparison.

4.5. Varying the number of base classifiers

In Section 4.2.3 and Figure 2 of the main text, we
examine the use of different numbers of base classifiers
(i.e., R). The semantic embedding br of the phantom
classes are set equal to ar,∀r ∈ {1, · · · ,R} at 100%
(i.e., R = S). For percentages smaller than 100%, we
perform K-means and set br to be the cluster centroids
after `2 normalization (in this case, R = K). For per-
centages larger than 100%, we set the first S br to be ar,
and the remaining br as the random combinations of ar

(also with `2 normalization on br).

5. Additional experimental results and anal-
yses

We present in this section some additional experi-
mental results on zero-shot learning. Unless stated oth-
erwise, we focus on learning with the one-versus-other
loss (cf. eq. (5) of the main text).

5.1. Cross-validation (CV) strategies

Table 1 shows the results on CUB (averaged over
four splits) using the hyper-parameters tuned by class-
wise CV and sample-wise CV, respectively. The results
based on class-wise CV are about 2% better than those
of sample-wise CV, verifying the necessity of simulating
the zero-shot learning scenario while we tune the hyper-
parameters at the training stage.

5.2. Additional comparison of different semantic
spaces for embedding classes

Our method for synthesizing classifiers accepts dif-
ferent semantic embedding spaces. We expand our re-

Table 1: Comparison between sample- and class-wise cross-
validation for hyper-parameter tuning on CUB (learning with
the one-versus-other loss).

CV CUB CUB
Scenarios (AlexNet) (GoogLeNet)

Sample-wise 44.7 52.0
Class-wise 46.6 53.4

sults on Table 5 of the main text to include AlexNet
features as well. The results are in Table 2. We use
word vectors provided by Fu et al. [10, 11], which
are of 100 and 1000 dimensions per class, respectively.
We see that the two types of features, AlexNet and
GoogLeNet, demonstrate very similar trends. First,
higher-dimensional word vectors often give rise to bet-
ter performance. Second, human-annotated attributes
outperform automatically-learned word vectors. Third,
combining the word vectors and the attributes leads to
better results than separately using either one of them.

5.3. Comparison to other state-of-the-art meth-
ods

In Table 3, we contrast our methods to several other
state-of-the-art methods, in addition to Table 2 of the
main text. We note subtle differences in the experiment
setup of some of these methods from ours:

• TMV-BLP and TMV-HLP [10, 11]. These meth-
ods focus on the transductive setting, where they
have access to unlabeled test data from unseen
classes during the training stage. Additionally,
they use OverFeat [27] features for CUB, Over-
Feat+DeCAF [6] for AwA, and both attributes and
word vectors for class embeddings.

• [16]. This method works on the transductive set-
ting. It uses OverFeat features for both AwA and
CUB, and combines attributes and word vectors for
class embeddings.

• [19] This method works on the semi-supervised
setting, where a portion of unlabeled data (not used
for testing) from unseen classes are available at
training.

• HAT-n [3]. This method uses extra semantic in-
formation (WordNet class hiearchy). It uses CNN-
M2K features [4] and extra cropped images.

• AMP (SR+SE) [12]. This method uses attributes



Table 2: Comparison between different semantic embedding spaces for our approach.

Methods Semantic embeddings Dimensions Features AwA
Ourso-vs-o word vectors 100 AlexNet 37.6
Ourso-vs-o word vectors 1000 AlexNet 52.4
Ourso-vs-o attributes 85 AlexNet 64.0
Ourso-vs-o attributes + word vectors 85 + 100 AlexNet 65.6
Ourso-vs-o attributes + word vectors 85 + 1000 AlexNet 68.0
SJE[2] word vectors 400 GoogLeNet 51.2

Ourso-vs-o word vectors 100 GoogLeNet 42.2
Ourso-vs-o word vectors 1000 GoogLeNet 57.5
Ourso-vs-o attributes 85 GoogLeNet 69.7
Ourso-vs-o attributes + word vectors 85 + 100 GoogLeNet 73.2
Ourso-vs-o attributes + word vectors 85 + 1000 GoogLeNet 76.3

and (100-dimensional) word vectors and OverFeat
features in their experiments.

• [32]. This method focuses on mining/discovering
new (category-level) attributes. It requires extra hu-
man efforts to annotate the new attributes for un-
seen classes.

• [13]. The best result on AwA presented in this
paper uses the discovered attributes in [32].

As shown in Table 3, our method outperforms all of
them on the dataset CUB despite the fact that they em-
ploy extra images or semantic embedding information.

5.3.1 SUN-10

Some existing work [13, 25, 33, 34] considers another
setting for SUN dataset — with 707 seen classes and 10
unseen classes. Moreover, [25, 33, 34] use the VGG-
verydeep-19 [28] CNN features. In Table 3, we provide
results of our approach based on this splitting. Com-
pared to previously published results, our method again
clearly shows superior performance.

5.4. Discussion on the numbers of seen and un-
seen classes

In this subsection, we analyze the results under differ-
ent numbers of seen/unseen classes in performing zero-
shot learning using the CUB dataset.

5.4.1 Varying the number of seen classes

We first examine the performance of zero-shot learning
under different numbers of seen classes (e.g., 50, 100,
and 150) while fixing the number of unseen classes to

Table 4: Performance of our method under different number
S of seen classes on CUB. The number of unseen classes U is
fixed to be 50.

U and S S = 50 S = 100 S = 150

U = 50 38.4 49.9 53.8

be 50. We perform 20 random selections of seen/unseen
classes. Unsurprisingly, Table 4 shows that increasing
the number of seen classes in training leads to improved
performance on zero-shot learning.

5.4.2 Varying the number of unseen classes

We then examine the performance of our approach to
zero-shot learning under different numbers of unseen
classes (e.g., within [0, 150]), with the number of seen
classes fixed to be 50 during training. We again conduct
experiments on CUB, and perform 20 random selections
of seen/unseen classes. The results are presented in Fig-
ure 2. We see that the accuracy drops as the number of
unseen classes increases.

5.5. Results on learning metrics for computing
semantic similarities

We improve our method by also learning metrics for
computing semantic similarity. Please see Section 2 for
more details. Preliminary results on AwA in Table 5
suggest that learning metrics can further improve upon
our current one-vs-other formulation.



Table 3: Comparison between our method and other state-of-the-art methods for zero-shot learning. Our results are based on the
GoogLeNet features and attributes or attributes + word vectors as semantic embeddings. See Section 5.3 for the details of other
methods and SUN-10.

Methods Shallow features Deep features
AwA CUB SUN-10 AwA CUB SUN SUN-10

TMV-BLP [10] 47.7 16.3†‡ - 77.8 45.2† - -
TMV-HLP [11] 49.0 19.5†‡ - 80.5 47.9† - -

[16] 49.7 28.1†‡ - 75.6 40.6† - -
[19] 40.0 - - - - - -

HAT-n [3] - - - 68.8 48.6† - -
AMP (SR+SE) [12] - - - 66.0 - - -

[32] 48.3 - - - - - -
[13] 48.7 - 56.2 - - - -

ESZSL [25] - - 65.8 - - - 82.1
SSE-ReLU [34] - - - - - - 82.5

[33] - - - - - - 83.8
SJE[2] - - - - - - 87.0

Ourso-vs-o 42.6 35.0 - 69.7 53.4 62.8 90.0
Ourscs 42.1 34.7 - 68.4 51.6 52.9 87.0

Oursstruct 41.5 36.4 - 72.9 54.5 62.7 85.0
§Ourso-vs-o - - - 76.3 - - -

†: Results reported by the authors on a particular seen-unseen split.
‡: Based on Fisher vectors as shallow features.
§: Ours with attributes + (1000-dimensional) word vectors.

50 100 150
0

20

40

60

80

100

number of unseen classes

a
c
c
u

ra
c
y
 (

in
 %

)

Figure 2: Performance of our method under different numbers
of unseen classes on CUB. The number of seen classes is fixed
to be 50.

Table 5: Effect of learning metrics for computing semantic
similarity on AwA.

Dataset Type of embeddings w/o learning w/ learning
AwA attributes 69.7% 73.4%

5.6. Detailed results and analysis of experiments
on ImageNet

Table 6 provides expanded zero-shot learning results
on ImageNet (cf. Table 3 of the main text). Note that
ConSE [22] has a free parameter T , corresponding to
how many nearest seen classes to use for convex com-
bination. In our implementation, we follow the paper to
test on T = 1, 10, and 1,000. We further apply the class-
wise cross-validation (cf. Section 1 of this material) to
automatically set T . We also report the published best
result in [22]. Our methods (Ourso-vs-o and Oursstruct)
achieve the highest accuracy in most cases.

As mentioned in the main text, the three sets of un-
seen classes, 2-hop, 3-hop, and All are built according to
the ImageNet label hierarchy. Note that they are not mu-
tually exclusive. Indeed, 3-hop contains all the classes
in 2-hop, and All contains all in 3-hop. To examine if the
semantic similarity/dissimilarity to the 1K seen classes
(according to the label hierarchy) would affect the clas-
sification accuracy, we split All into three disjoint sets, 2-
hop, pure 3-hop, and others, which contain 1,509, 6,169,
and 12,667 classes, respectively (totally 20,345). We
then test on All, but report accuracies of images belong-
ing to different disjoint sets separately. Figure 3 sum-



marizes the results. Our method outperforms ConSE in
almost all cases. The decreasing accuracies from 2-hop,
pure 3-hop, to others (by both methods) verify the high
correlation of the semantic relationship to the classifi-
cation accuracy in zero-shot learning. This observation
suggests an obvious potential limitation: it is unrealistic
to expect good performance on unseen classes that are
semantically too dissimilar to seen classes.

5.7. Qualitative results

In this subsection, we present qualitative results of
our method. We first illustrate what visual information
the models (classifiers) for unseen classes capture, when
provided with only semantic embeddings (no example
images). In Figure 4, we list (on top) the 10 unseen
class labels of AwA, and show (in the middle) the top-5
images classified into each class c, according to the de-
cision values wT

cx (cf. eq. (1) and (4) of the main text).
Misclassified images are marked with red boundaries.
At the bottom, we show the first (highest score) misclas-
sified image (according to the decision value) into each
class and its ground-truth class label. According to the
top images, our method reasonably captures discrimina-
tive visual properties of each unseen class based solely
on its semantic embedding. We can also see that the mis-
classified images are with appearance so similar to that
of predicted class that even humans cannot easily distin-
guish between the two. For example, the pig image at
the bottom of the second column looks very similar to
the image of hippos. Figure 5 and Figure 6 present the
results in the same format on CUB and SUN, respec-
tively (both on a subset of unseen class labels).

We further analyze the success and failure cases; i.e.,
why an image from unseen classes is misclassified. The
illustrations are in Figure 7, 8, and 9 for AwA, CUB,
and SUN, respectively. In each figure, we consider
(Left) one unseen class and show its convex combina-
tion weights sc = {sc1, · · · , scR} as a histogram. We
then present (Middle-Left) the top-3 semantically simi-
lar (in terms of sc) seen classes and their most represen-
tative images. As our model exploits phantom classes
to connect seen and unseen classes in both semantic and
model spaces, we expect that the model (classifier) for
such unseen class captures similar visual information as
those for semantically similar seen classes do. (Middle-
Right) We examine two images of such unseen class,
where the top one is correctly classified; the bottom one,
misclassified. We also list (Right) the top-3 predicted
labels (within the pool of unseen classes) and their most
representative images. Green corresponds to correct la-
bels. We see that, in the misclassified cases, the test im-

ages are visually dissimilar to those of the semantically
similar seen classes. The synthesized unseen classifiers,
therefore, cannot correctly recognize them, leading to
incorrect predictions.

5.8. Comparison between shallow and deep fea-
tures of our approach

In Table 4 of the main text, our approach performs
better with deep features than with shallow features
compared to other methods. We propose explanations
for this phenomenal. Deep features are learned hier-
archically and expected to be more abstract and se-
mantically meaningful. Arguably, similarities between
them (measured in inner products between classifiers)
might be more congruent with similarities computed
in the semantic embedding space for combining clas-
sifiers. Additionally, shallow features have higher di-
mensions (around 10,000) than deep features (e.g., 1024
for GoogLeNet) so they might require more phantom
classes to synthesize classifiers.

5.9. Analysis on the number of base classifiers

In Fig. 2 of the main text, we show that even by using
fewer base (phantom) classifiers than the number of seen
classes (e.g., around 60 %), we get comparable or even
better results, especially for CUB. We surmise that this
is because CUB is a fine-grained recognition benchmark
and has higher correlations among classes, and provide
analysis in Fig. 10 to justify this.

We train one-versus-other classifiers for each value
of the regularization parameter (i.e., λ in eq. (5) of the
main text) on both AwA and CUB, and then perform
PCA on the resulting classifier matrices. We then plot
the required number (in percentage) of PCA components
to capture 95% of variance in the classifiers. Clearly,
AwA requires more. This explains why we see the drop
in accuracy for AwA but not CUB in Fig. 2 of the main
text when using even fewer base classifiers. Particularly,
the low percentage for CUB in Fig. 10 implies that fewer
base classifiers are possible.
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Table 6: Flat Hit@K and Hierarchial precision@K performance (in %) on the task of zero-shot learning on ImageNet. We mainly
compare it with ConSE(T ) [22], where T is the number of classifiers to be combined in their paper. For ConSE(CV), T is obtained
by class-wise CV. Lastly, the best published results in [22] are also reported, corresponding to ConSE(10) [22]. For both types of
metrics, the higher the better.

Scenarios Methods Flat Hit@K Hierarchical precision@K
K= 1 2 5 10 20 2 5 10 20

2-hop ConSE(1) 9.0 12.9 20.8 28.3 38.1 21.1 22.2 24.8 28.1
ConSE(10) 9.2 13.7 22.4 31.0 41.4 22.5 24.1 27.3 30.8

ConSE(10) [22] 9.4 15.1 24.7 32.7 41.8 21.4 24.7 26.9 28.4
ConSE(1000) 8.9 13.3 21.8 30.1 40.3 22.0 23.7 27.0 30.4
ConSE(CV) 8.3 12.9 21.8 30.9 41.7 21.5 23.8 27.5 31.3

Ourso-vs-o 10.5 16.7 28.6 40.1 52.0 25.1 27.7 30.3 32.1
Oursstruct 9.8 15.3 25.8 35.8 46.5 23.8 25.8 28.2 29.6

3-hop ConSE(1) 2.8 4.2 7.2 10.1 14.3 6.2 18.4 20.4 22.1
ConSE(10) 2.9 4.5 7.7 11.3 16.1 6.9 20.9 23.1 25.2
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Oursstruct 2.9 4.7 8.7 13.0 18.6 8.0 22.8 25.0 26.7

All ConSE(1) 1.4 2.3 3.8 5.6 7.8 3.0 7.6 8.7 9.6
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Figure 3: On the ImageNet dataset, we outperform ConSE (i.e., ConSE(10) of our implementation) on different disjoint sets of
categories in the scenario All in almost all cases. See Section 5.6 of this material for details.

[4] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisser-
man. Return of the devil in the details: Delving deep
into convolutional nets. In BMVC, 2014. 4

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 2, 3

[6] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. Decaf: A deep convolu-
tional activation feature for generic visual recognition.
In ICML, 2014. 4

[7] M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classi-
fier: Zero-shot learning using purely textual descriptions.
In ICCV, 2013. 1

[8] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and



Persian cat Hippo Leopard 
Humpback 

whale 
Seal Chimpanzee Rat Giant panda Pig Raccoon 

 

 

 

 

 

 

Raccoon 

 

 

 

 

 

 

Pig 

 

 

 

 

 

 

Persian cat 

 

 

 

 

 

 

Seal 

 

 

 

 

 

Humpback 

whale 

 

 

 

 

 

 

rat 

 

 

 

 

 

 

Raccoon 

 

 

 

 

 

 

Seal 

 

 

 

 

 

 

Hippo 

 

 

 

 

 

 

Rat 

Figure 4: Qualitative results of our method (Oursstruct) on AwA. (Top) We list the 10 unseen class labels. (Middle) We show the
top-5 images classified into each class, according to the decision values. Misclassified images are marked with red boundaries.
(Bottom) We show the first misclassified image (according to the decision value) into each class and its ground-truth class label.
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Figure 5: Qualitative results of our method (Oursstruct) on CUB. (Top) We list a subset of unseen class labels. (Middle) We show
the top-5 images classified into each class, according to the decision values. Misclassified images are marked with red boundaries.
(Bottom) We show the first misclassified image (according to the decision value) into each class and its ground-truth class label.
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