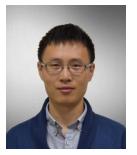
Poster ID 4

Synthesized Classifiers for Zero-shot Learning



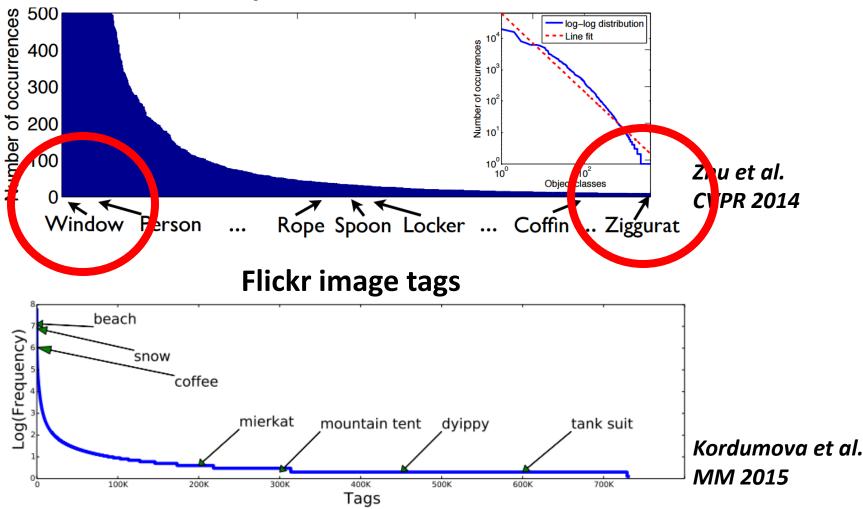
1

USC

Soravit (Beer) Changpinyo^{*1} Wei-Lun (Harry) Chao^{*1}

Boqing Gong²

Fei Sha³


Challenge for Recognition in the Wild

Figures from Wikipedia

The Long Tail Phenomena

Objects in SUN dataset

The Long Tail Phenomena

Problem for the tail

How to train a good classifier when **few labeled examples** are available?

Extreme case

How to train a good classifier when

no labeled examples are available?

Zero-shot Learning

Zero-shot Learning

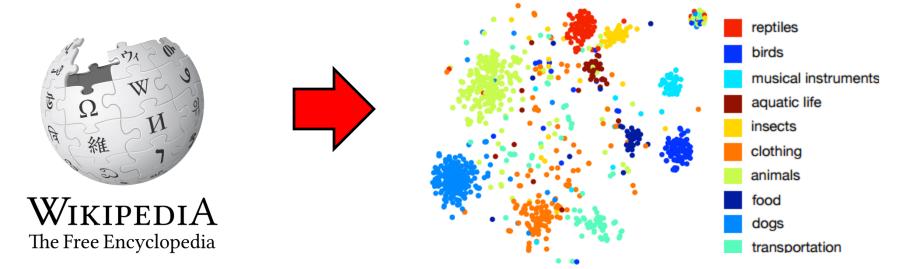
- Two types of classes
 - Seen: with labeled examples
 - Unseen: without examples

Figures from Derek Hoiem's slides

Zero-shot Learning: Challenges

- How to relate seen and unseen classes?
- How to attain discriminative performance on the unseen classes?

Zero-shot Learning: Challenges


- How to relate seen and unseen classes?
 Semantic information that describes each object, including unseen ones.
- How to attain discriminative performance on the unseen classes?

Semantic Embeddings

• Attributes (Farhadi et al. 09, Lampert et al. 09, Parikh & Grauman 11, ...)

• Word vectors (Mikolov et al. 13, Socher et al. 13, Frome et al. 13, ...)

Zero-shot Learning: Challenges

- How to relate seen and unseen classes?
 Semantic embeddings (attributes, word vectors, etc.)
- How to attain discriminative performance on the unseen classes?

Zero-shot Learning: Challenges

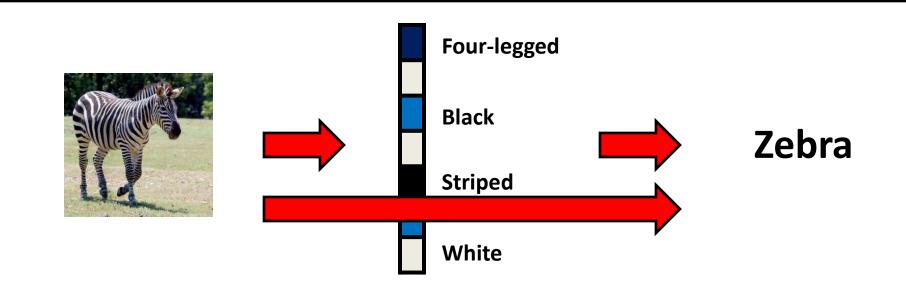
- How to relate seen and unseen classes?
 Semantic embeddings (attributes, word vectors, etc.)
- How to attain discriminative performance on the unseen classes?

Zero-shot learning algorithms

Zero-shot Learning

Seen Objects

Unseen Object

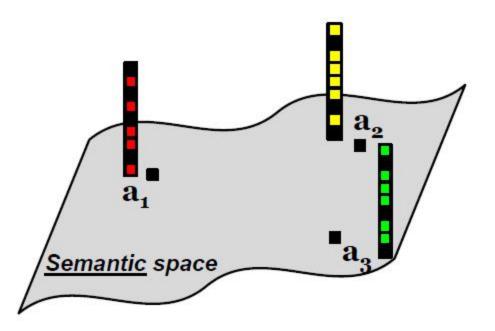

Has Ears Has Eyes Has Four Le Has Mane Has Tail

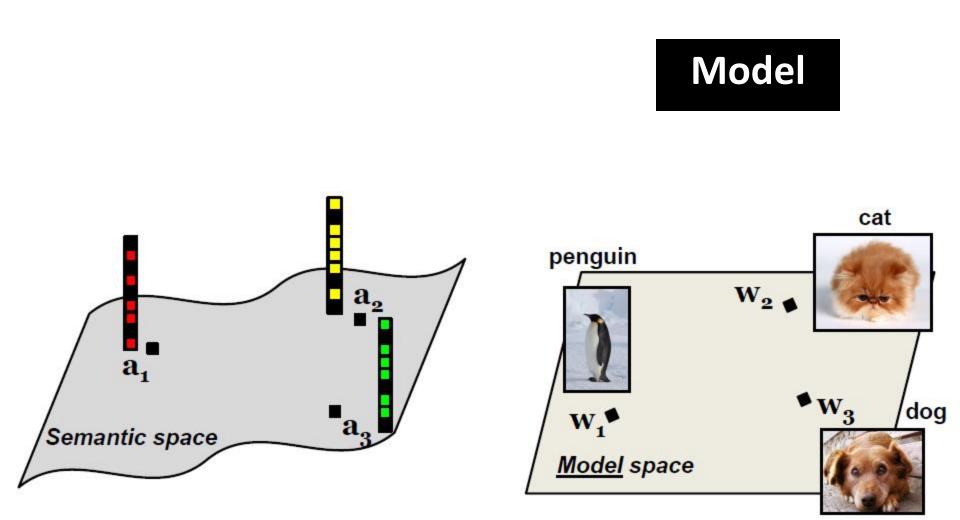
Brown Muscular Has Snout Has Stripes (like cat) Has Mane (like horse) Has Snout (like dog)

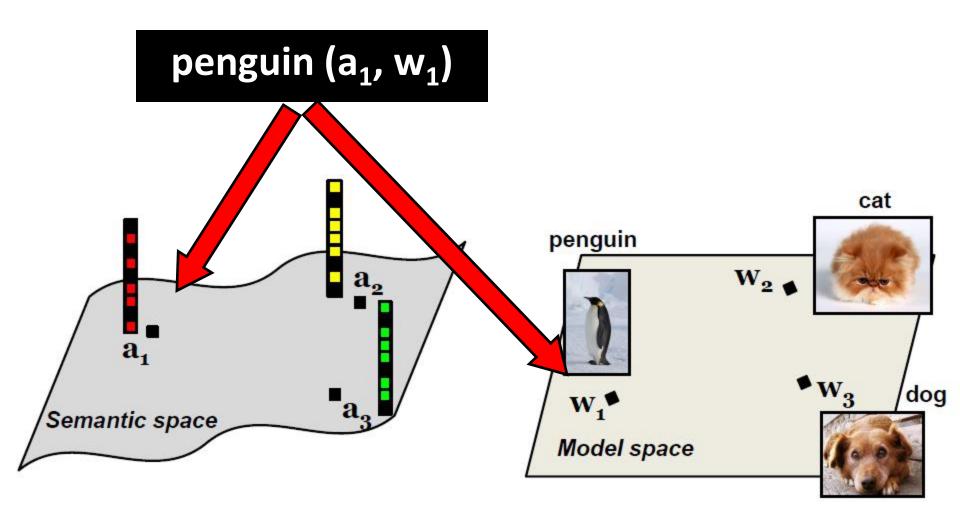
How to effectively construct a model for zebra?

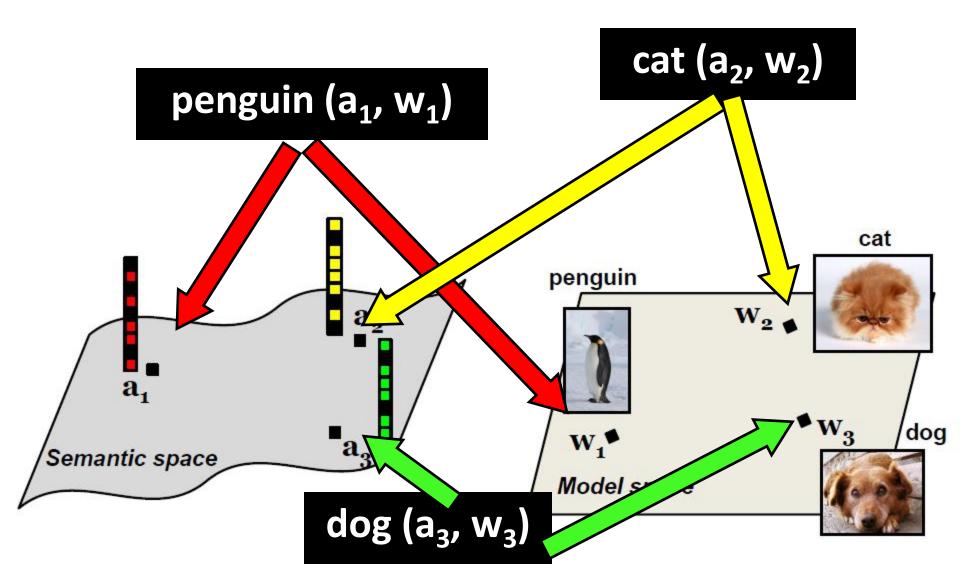
Figures from Derek Hoiem's slides

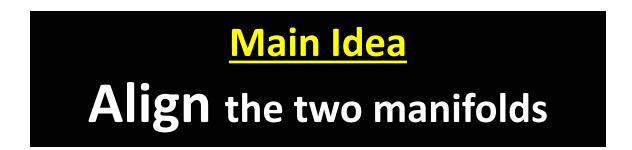
Given A Novel Image...

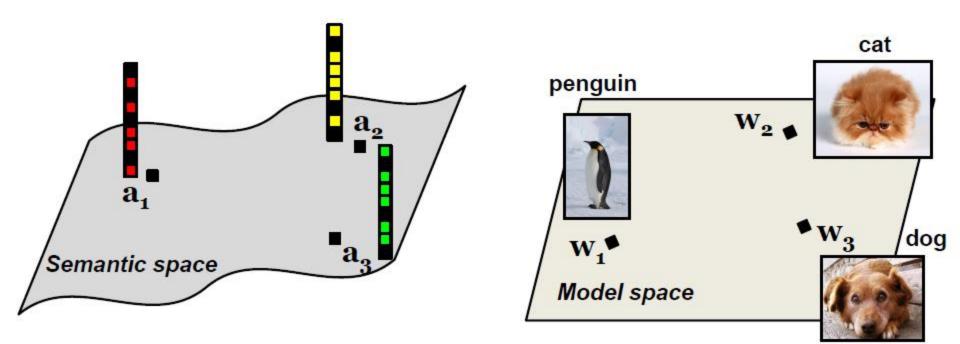


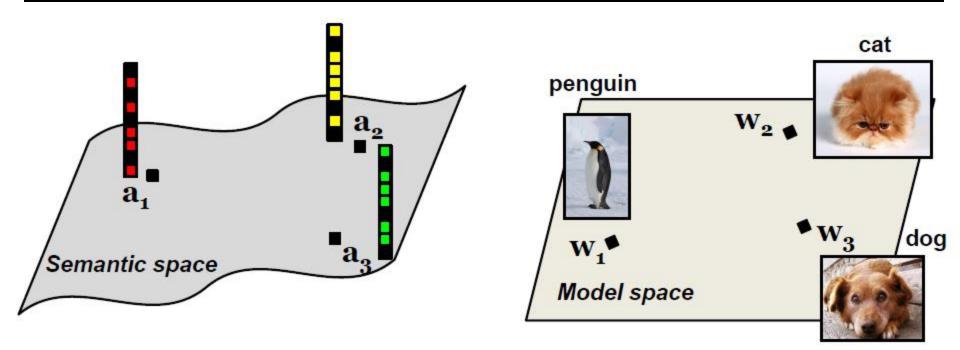

Separate (Lampert et al. 09, Frome et al. 13, Norouzi et al. 14, ...)

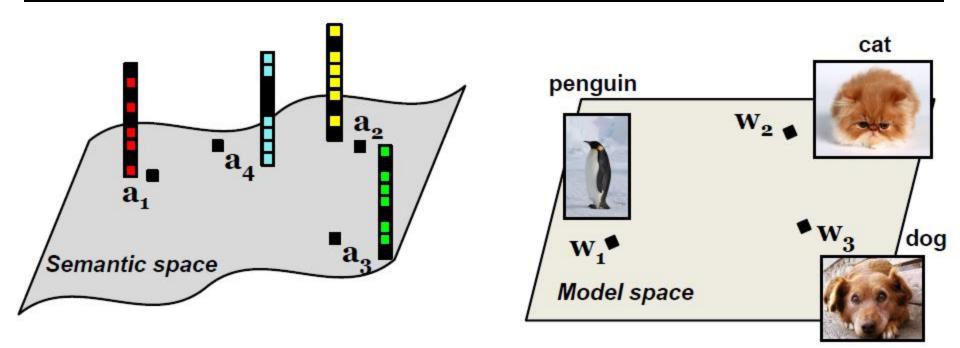

Unified (Akata et al. 13 and 15, Mensink et al. 14, Romera-Paredes et al. 15, ...)


Our unified model uses *highly flexible bases* for *synthesizing* classifiers

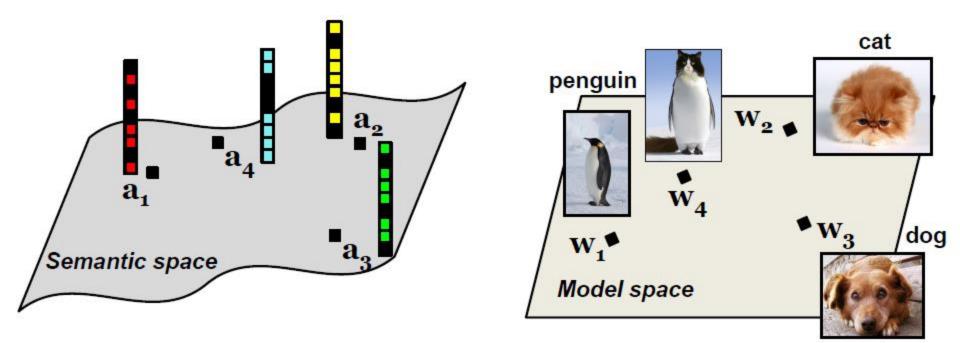

Semantic





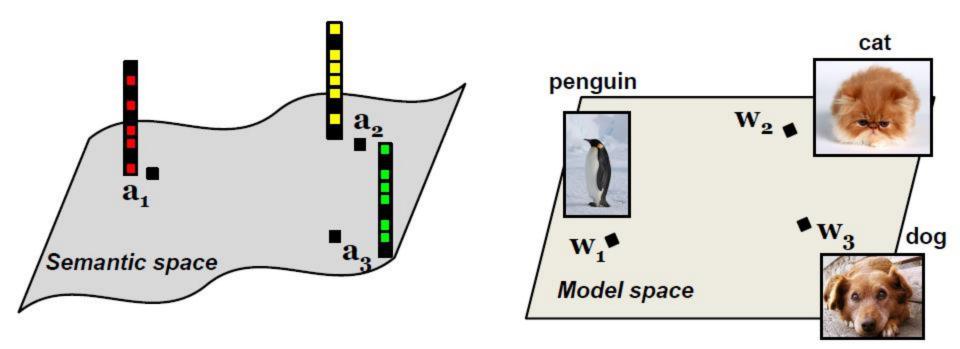

If we can align the two manifolds...

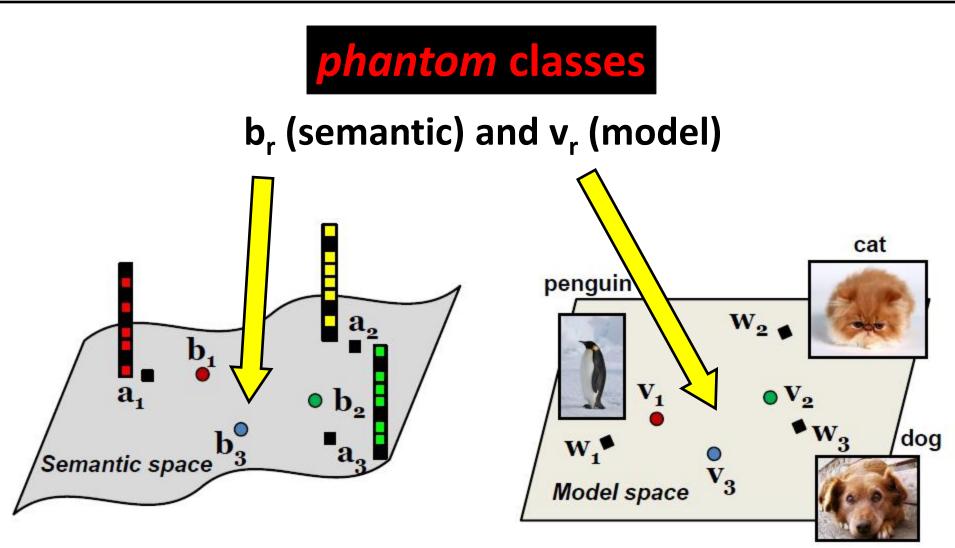
We can construct classifiers for ANY classes according to their semantic information.


If we can align the two manifolds...

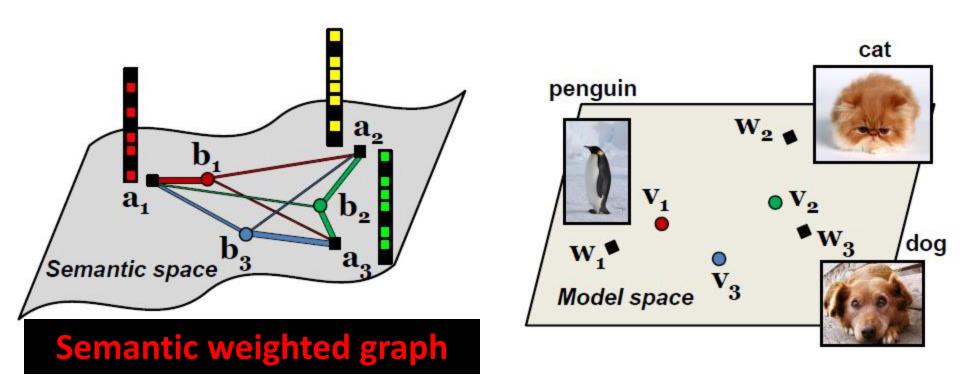

We can construct classifiers for ANY classes according to their semantic information.

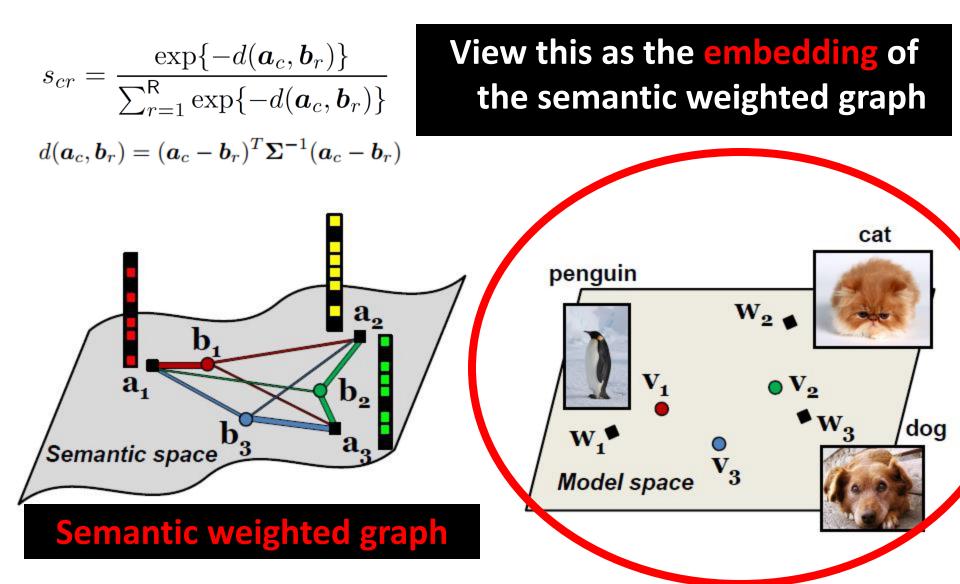
If we can align the two manifolds...


We can construct classifiers for ANY classes according to their semantic information.



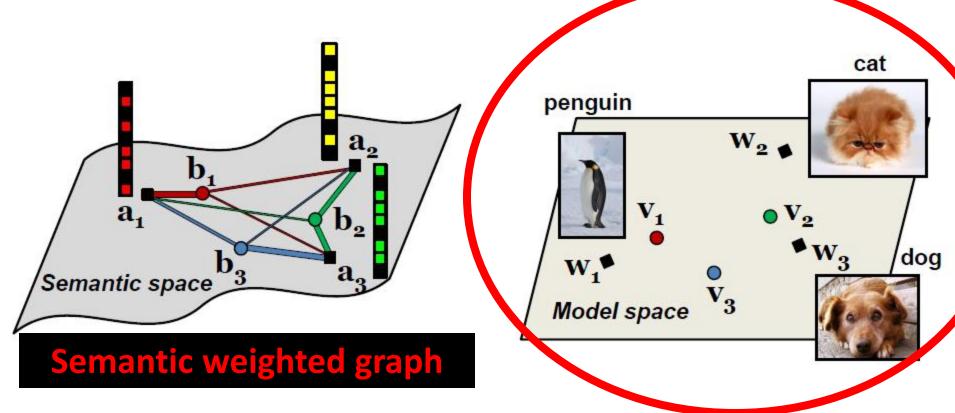
phantom classes


not corresponding to any objects in the real world



$$s_{cr} = \frac{\exp\{-d(\boldsymbol{a}_{c}, \boldsymbol{b}_{r})\}}{\sum_{r=1}^{\mathsf{R}} \exp\{-d(\boldsymbol{a}_{c}, \boldsymbol{b}_{r})\}}$$
$$d(\boldsymbol{a}_{c}, \boldsymbol{b}_{r}) = (\boldsymbol{a}_{c} - \boldsymbol{b}_{r})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{a}_{c} - \boldsymbol{b}_{r})$$

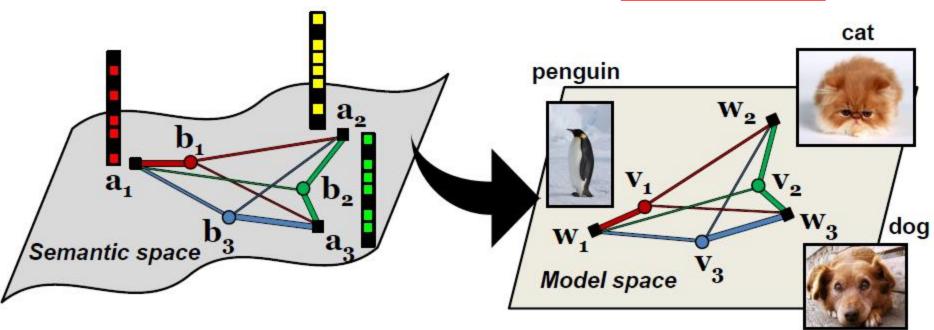
Define relationships s_{cr} between actual class c and phantom class r in the semantic space



$$s_{cr} = \frac{\exp\{-d(\boldsymbol{a}_c, \boldsymbol{b}_r)\}}{\sum_{r=1}^{\mathsf{R}} \exp\{-d(\boldsymbol{a}_c, \boldsymbol{b}_r)\}}$$

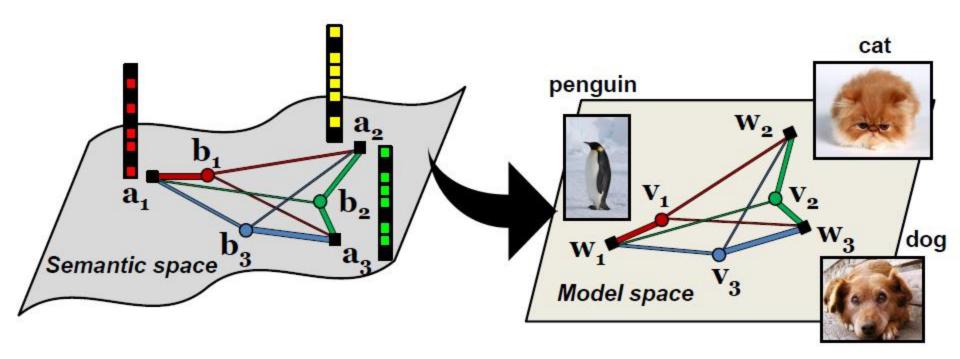
$$d(\boldsymbol{a}_c, \boldsymbol{b}_r) = (\boldsymbol{a}_c - \boldsymbol{b}_r)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{a}_c - \boldsymbol{b}_r)$$

Let's preserve the structure of the semantic graph

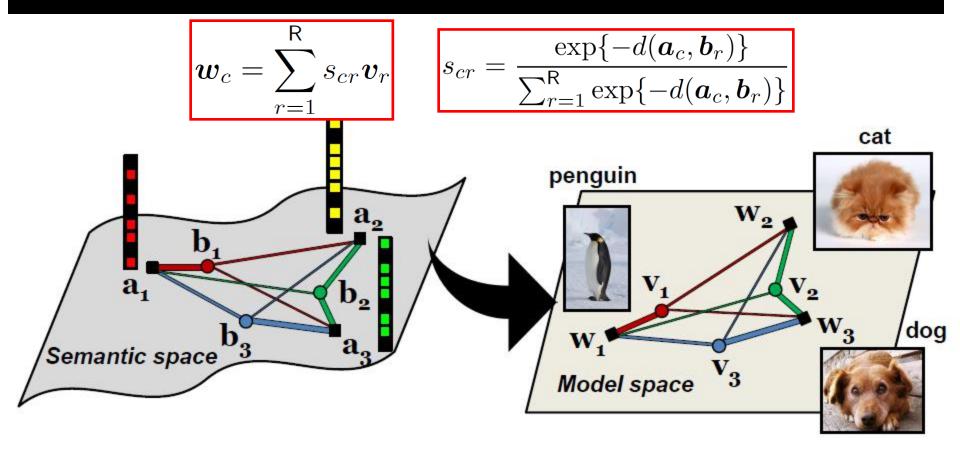

here as much as possible



$$s_{cr} = \frac{\exp\{-d(\boldsymbol{a}_c, \boldsymbol{b}_r)\}}{\sum_{r=1}^{\mathsf{R}} \exp\{-d(\boldsymbol{a}_c, \boldsymbol{b}_r)\}}$$


 $d(\boldsymbol{a}_c, \boldsymbol{b}_r) = (\boldsymbol{a}_c - \boldsymbol{b}_r)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{a}_c - \boldsymbol{b}_r)$

$$\min_{\boldsymbol{w}_c, \boldsymbol{v}_r} \|\boldsymbol{w}_c - \sum_{r=1}^{\mathsf{R}} s_{cr} \boldsymbol{v}_r\|_2^2$$
$$\boldsymbol{w}_c = \sum_{r=1}^{\mathsf{R}} s_{cr} \boldsymbol{v}_r$$



$$\boldsymbol{w}_{c} = \sum_{r=1}^{\mathsf{R}} s_{cr} \boldsymbol{v}_{r}$$
$$\boldsymbol{s}_{cr} = \frac{\exp\{-d(\boldsymbol{a}_{c}, \boldsymbol{b}_{r})\}}{\sum_{r=1}^{\mathsf{R}} \exp\{-d(\boldsymbol{a}_{c}, \boldsymbol{b}_{r})\}}$$

Learning Problem

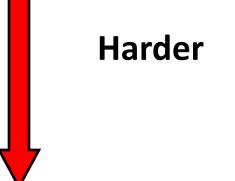
Learn phantom coordinates v and b for optimal discrimination and generalization performance

Experiments: Setup

Datasets

	AwA (animals)	CUB (birds)	SUN (scenes)	ImageNet	
# of seen classes	40	150	645/646	1,000	
# of unseen classes	10	50	72/71	20,842	
Total # of images	30,475	11,788	14,340	14,197,122	
Semantic embeddings	attributes	attributes	attributes	word vectors	

- Visual features: GoogLeNet
- Evaluation
 - Test images from unseen classes only
 - Accuracy of classifying them into one of the unseen classes


Experiments: AwA, CUB, SUN

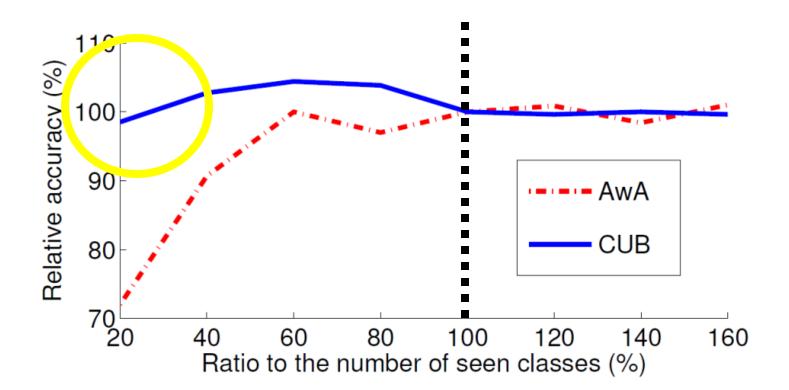
Methods	AwA	CUB	SUN	
DAP [Lampert et al. 09 and 14]	60.5	39.1	44.5	
SJE [Akata et al. 15]	66.7	50.1	56.1	
ESZSL [Romera-Paredes et a. 15]	64.5	44.0	18.7	
ConSE [<i>Norouzi et al. 14</i>]	63.3	36.2	51.9	
COSTA [<i>Mensink et al.</i> 14]	61.8	40.8	47.9	
Sync ^{o-vs-o} (<i>R, b_r</i> fixed)	69.7	53.4	62.8	
Sync ^{struct} (<i>R, b_r</i> fixed)	xed) 72.9 54.5			
Sync ^{o-vs-o} (<i>R</i> fixed, <i>b</i> _r learned)	71.1	54.2	63.3	

o-vs-o (one-versus-all), struct (Crammer-Singer with I₂ structure loss) R: the number of phantom classes (fixed to the number of seen classes) b_r: the semantic embeddings of phantom classes

Experiments: Setup on Full ImageNet

- 3 types of unseen classes
 - 2-hop* from seen classes 1509 classes
 - *3-hop** from seen classes 7678 classes
 - *All* 20345 classes

- Metric
 - Flat hit@K


Do top K predictions contain the true label?

* Based on WordNet hierarchy

Experiments: ImageNet (22K)

		Flat Hit@K						
	Methods	1	2	5	10	20		
2-hop	ConSE [<i>Norouzi et al. 14</i>]	9.4	15.1	24.7	32.7	41.8		
	SynC ^{o-vs-o}	10.5	16.7	28.6	40.1	52.0		
	SynC ^{struct}	9.8	15.3	25.8	35.8	46.5		
	Methods	1	2	5	10	20		
3-hop	ConSE [Norouzi et al. 14]	2.7	4.4	7.8	11.5	16.1		
	SynC ^{o-vs-o}	2.9	4.9	9.2	14.2	20.9		
All	SynC ^{struct}	2.9	4.7	8.7	13.0	18.6		
	Methods	1	2	5	10	20		
	ConSE [<i>Norouzi et al. 14</i>]	1.4	2.2	3.9	5.8	8.3		
	SynC ^{o-vs-o}	1.4	2.4	4.5	7.1	10.9		
	SynC ^{struct}	1.5	2.4	4.4	6.7	10.0		

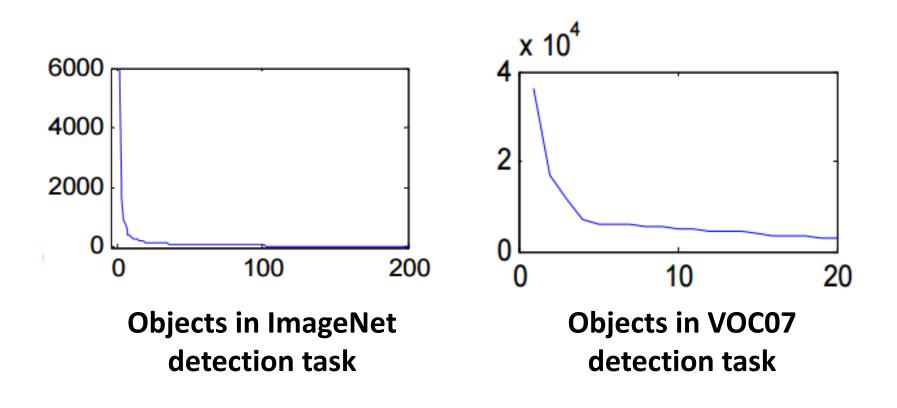
Experiments: Number of phantom classes

Top 5 images

AwA dataset

Persian cat	Нірро	Leopard	Humpback whale	Seal	Chimpanzee	Rat	Giant panda	Pig	Raccoon
				A					
			- Alex				<u>.</u>		
32									
					ġ.	(Reference)			

Conclusion


Poster ID 4

Summary

- ✓ Novel classifier synthesis mechanism with the state-ofthe-art performance on zero-shot learning
- \checkmark More results and analysis in the paper
- **Future work**
 - New challenging problem: we cannot assume future objects only come from unseen classes. https://arxiv.org/abs/1605.04253

Thanks!

The Long Tail Phenomena

Ouyang et al. CVPR 2016

Current Approaches

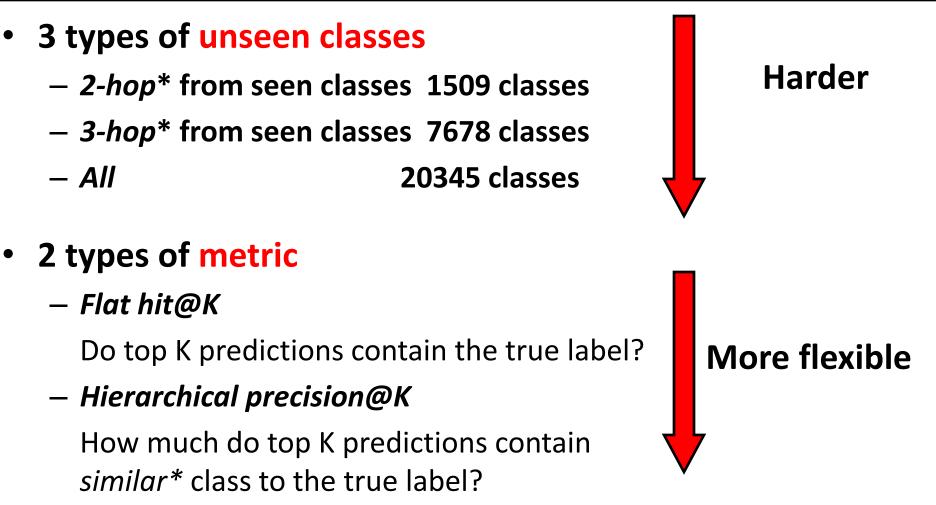
- Embedding based
 - Two-stage (Lampert et al. 09, Frome et al. 13, Norouzi et al. 14, ...)
 Features → Semantic embeddings → Labels
 - Unified (Akata et al. 13 and 15, Romera-Paredes et al. 15, ...)
 Learning scoring function between features and semantic embeddings of labels
- Similarity based
 - Semantic embeddings define how to combine seen classes' classifiers (Mensink et al. 14, ...)

We propose a **unified** approach that offers **richer flexibility** in constructing new classifiers than previous approaches.

Learning phantom coordinates

Phantom coordinates in both spaces are **optimized** for optimal discrimination and generalization performance.

$$\min_{\{\boldsymbol{v}_r\}_{r=1}^{\mathsf{R}}, \{\beta_{rc}\}_{r,c=1}^{\mathsf{R},\mathsf{S}}} \sum_{c=1}^{\mathsf{S}} \sum_{n=1}^{\mathsf{N}} \ell(\boldsymbol{x}_n, \mathbb{I}_{y_n,c}; \boldsymbol{w}_c) + \frac{\lambda}{2} \sum_{c=1}^{\mathsf{S}} \|\boldsymbol{w}_c\|_2^2 \qquad \text{Classification loss} \\
+ \eta \sum_{r,c=1}^{\mathsf{R},\mathsf{S}} |\beta_{rc}| + \frac{\gamma}{2} \sum_{r=1}^{\mathsf{R}} (\|\boldsymbol{b}_r\|_2^2 - h^2)^2, \\
\text{s.t.} \quad \boldsymbol{w}_c = \sum_{r=1}^{\mathsf{R}} s_{cr} \boldsymbol{v}_r, \ s_{cr} = \frac{\exp\{-d(\boldsymbol{a}_c, \boldsymbol{b}_r)\}}{\sum_{r=1}^{\mathsf{R}} \exp\{-d(\boldsymbol{a}_c, \boldsymbol{b}_r)\}} \qquad \text{Synthesis} \\
\mathbf{b}_r = \sum_{c=1}^{\mathsf{S}} \beta_{rc} \boldsymbol{a}_c, \forall r \in \{1, \cdots, \mathsf{R}\}$$


Learning phantom coordinates

Phantom coordinates in both spaces are **optimized** for optimal discrimination and generalization performance.

$$\begin{aligned} \min_{\substack{\{\boldsymbol{v}_r\}_{r=1}^{\mathsf{R},\mathsf{S}}, \\ \{\boldsymbol{v}_r\}_{r=1}^{\mathsf{R},\mathsf{S}} \in \mathbb{R}^{\mathsf{R},\mathsf{S}} \\ = \eta \sum_{r,c=1}^{\mathsf{R},\mathsf{S}} |\beta_{rc}| + \frac{\gamma}{2} \sum_{r=1}^{\mathsf{R}} (\|\boldsymbol{b}_r\|_2^2 - h^2)^2, \\ \mathsf{s.t.} \quad \boldsymbol{w}_c = \sum_{r=1}^{\mathsf{R}} s_{cr} \boldsymbol{v}_r, \ s_{cr} = \frac{\exp\{-d(\boldsymbol{a}_c, \boldsymbol{b}_r)\}}{\sum_{r=1}^{\mathsf{R}} \exp\{-d(\boldsymbol{a}_c, \boldsymbol{b}_r)\}} \end{aligned}$$

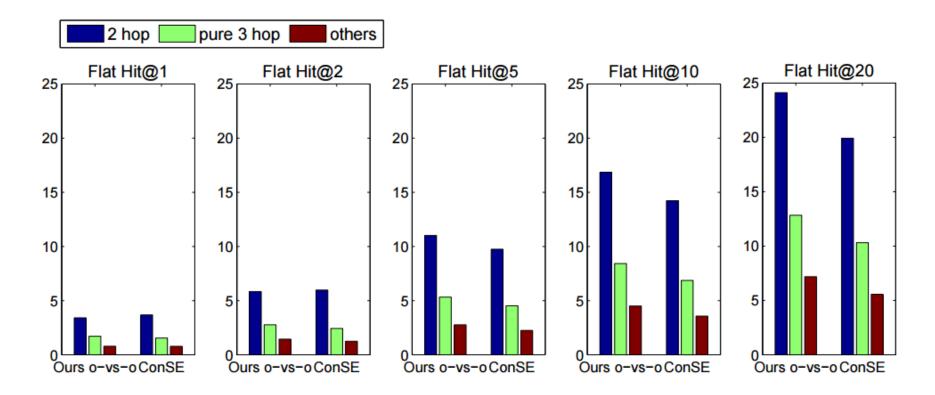
$$\begin{aligned} \mathsf{b}_r = \sum_{c=1}^{\mathsf{S}} \beta_{rc} \boldsymbol{a}_c, \forall r \in \{1, \cdots, \mathsf{R}\} \\ \mathsf{b}_r = \sum_{c=1}^{\mathsf{S}} \beta_{rc} \boldsymbol{a}_c, \forall r \in \{1, \cdots, \mathsf{R}\} \end{aligned}$$

Experiments: Setup on Full ImageNet

* Based on WordNet hierarchy

Experiments: ImageNet (22K)

	Hierarchical Precision@K x 100										
	Methods	2	5	10	20						
2-hop	ConSE [<i>Norouzi et al. 14</i>]	21.4	24.7	26.9	28.4						
	SynC ^{o-vs-o}	25.1	27.7	30.3	32.1						
	SynC ^{struct}	23.8	25.8	28.2	29.6						
	Methods	2	5	10	20						
3-hop	ConSE [<i>Norouzi et al. 14</i>]	5.3	20.2	22.4	24.7						
	SynC ^{o-vs-o}	7.4	23.7	26.4	28.6						
	SynC ^{struct}	8.0	22.8	25.0	26.7						
	Methods	2	5	10	20						
All	ConSE [<i>Norouzi et al. 14</i>]	2.5	7.8	9.2	10.4						
	SynC ^{o-vs-o}	3.1	9.0	10.9	12.5						
	SynC ^{struct}	3.6	9.6	11.0	12.2						


Experiments: ImageNet (22K)

Scenarios	Methods		Flat Hit@K					Hierarchical precision@K			
	K=	1	2	5	10	20	2	5	10	20	
2-hop	ConSE[25]	9.4	15.1	24.7	32.7	41.8	21.4	24.7	26.9	28.4	
	ConSE by us	8.3	12.9	21.8	30.9	41.7	21.5	23.8	27.5	31.3	
	Ours ^{o-vs-o}	10.5	16.7	28.6	40.1	52.0	25.1	27.7	30.3	32.1	
	Ours ^{struct}	9.8	15.3	25.8	35.8	46.5	23.8	25.8	28.2	29.6	
3-hop	ConSE [25]	2.7	4.4	7.8	11.5	16.1	5.3	20.2	22.4	24.7	
	ConSE by us	2.6	4.1	7.3	11.1	16.4	6.7	21.4	23.8	26.3	
	Ours ^{o-vs-o}	2.9	4.9	9.2	14.2	20.9	7.4	23.7	26.4	28.6	
	Ours ^{struct}	2.9	4.7	8.7	13.0	18.6	8.0	22.8	25.0	26.7	
All	ConSE [25]	1.4	2.2	3.9	5.8	8.3	2.5	7.8	9.2	10.4	
	ConSE by us	1.3	2.1	3.8	5.8	8.7	3.2	9.2	10.7	12.0	
	Ours ^{o-vs-o}	1.4	2.4	4.5	7.1	10.9	3.1	9.0	10.9	12.5	
	Ours ^{struct}	1.5	2.4	4.4	6.7	10.0	3.6	9.6	11.0	12.2	

• 2-hop/3-hop/All: further from seen classes = harder

Hierarchical precision: relax the definition of "correct"

Experiments: ImageNet All (22K)

Accuracy for each type of classes in All

Experiments: Attribute v.s. Word vectors

Semantic embedding	Dimensions	Accuracy (%)
word vectors	100	42.2
word vectors	1000	57.5
attributes	85	69.7
attributes + word vectors	185	73.2
attributes + word vectors	1085	76.3

AwA dataset

Experiments: With vs. Without Learning Phantom Classes' Semantic Embeddings

Datasets	Types of embeddings	w/o learning	w/ learning
AwA	attributes	69.7%	71.1%
	100-d word vectors	42.2%	42.5%
	1000-d word vectors	57.6%	56.6%
CUB	attributes	53.4%	54.2%
SUN	attributes	62.8%	63.3%

Top: Top 5 images

AwA dataset

Persian cat	Нірро	Leopard	Humpback whale	Seal	Chimpanzee	Rat	Giant panda	Pig	Raccoon
Raccoon	Pig	Persian cat	Seal	Humpback whale	rat	Raccoon	Seal	Нірро	Rat

Top: Top 5 images

AwA dataset

Pe	ersian cat	Нірро	Leopard	Humpback whale	Seal	Chimpanzee	Rat	Giant panda	Pig	Raccoon
F	Raccoon	Pig	Persian cat	Seal	Humpback whale	rat	Raccoon	Seal	Нірро	Rat

Top: Top 5 predictions

CUB dataset

Artic tern	Ringed kingfisher	American crow	Cedar waxwing	House sparrow	Orange- crowned warbler	Hooded warbler	Heermann gull	Cactus wren	Whip-poor will
	2			Contraction of the second seco		- Contraction			
			I.						
			É						
		R				1		A	853
X						K	-	<u></u>	
8	20	X			%			- 4	
Ť	Scissor-		-	1 All	and a second	THE R.			K
Laysan albatross	tailed flycatcher	Pelagic cormorant	Gray kingbird	Harris sparrow	Hooded warbler	Prairie Warbler	Slaty- backed gull	Northern flicker	Cactus wren

Top: Top 5 predictions

SUN dataset

Computer room	Great hall	Video store	Botanical garden	Firing range (outdoor)	Gasworks	Glacier	Mausoleum	Moat (water)	Raceway
j			at at		前十	The sele	ANALY I		
	a jill	T REE					1.1.	F.	<u> </u>
	1944 A			THE REAL			Benel.	5	States.
						25	-		2
					K.	~			
							1		
					M t	1964	NAM!	2	Retto a
Trading floor	Lobby	Toy shop	Moat (water)	Mastaba	Chemical plant	Ice shelf	Cabana	Arch	Velodrome (outdoor)

Unseen class	Semantically closed seen classes			Testing images of the unseen class	Top-3 predictions (within unseen classes)			
Persian cat	Chihuahua	Collie	Siamese cat		Persian cat	Rat	Raccoon	
		J. U.			Chimpanzee	Rat	Raccoon	

Unseen class	c	Semantically losed seen classe	es	Testing images of the unseen class	Top-3 predictions (within unseen classes)			
Prairie warbler	Kentucky warbler	Yellow warbler	Wilson warbler		Prairie warbler	Orange crowned warbler	Hooded warbler	
					Barn swallow	Le Conte sparrow	Field sparrow	