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Abstract

We investigate the problem of weakly-supervised video
grounding, where only video-level sentences are provided.
This is a challenging task, and previous Multi-Instance
Learning (MIL) based image grounding methods turn to
fail in the video domain. Recent work attempts to de-
compose the video-level MIL into frame-level MIL by ap-
plying weighted sentence-frame ranking loss over frames,
but it is not robust and does not exploit the rich tempo-
ral information in videos. In this work, we address these
issues by extending frame-level MIL with a false positive
frame-bag constraint and modeling the visual feature con-
sistency in the video. In specific, we design a contextual
similarity between semantic and visual features to deal with
sparse objects association across frames. Furthermore, we
leverage temporal coherence by strengthening the cluster-
ing effect of similar features in the visual space. We con-
duct an extensive evaluation on YouCookII and RoboWatch
datasets, and demonstrate our method significantly outper-
forms prior state-of-the-art methods.

1. Introduction

Grounding textual signals to visual-spatial regions have
various applications, e.g., robotics [3, 2], human-computer
interaction [27] and image retrieval [11]. While vi-
sual grounding in static images has witnessed great
progress [11, 24, 4, 34, 35], visual grounding in videos
is still challenging—first, a video contains many frames,
which induces the temporal visual-language alignment
problem that is unique to video grounding; second, de-
spite rich source of online videos, constructing a large-
scale video dataset with grounding annotation is expensive
and time-consuming. Therefore, in this paper, we aim to
do weakly-supervised video grounding: localize language
queries in video frames without object location annotation.

Kapathy and Fei-Fei [11] introduce a Multiple Instance
Learning (MIL) based grounding method that only requires
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Figure 1. The illustration of (a) video-level MIL and (b) frame-
level MIL. V1 to V4 are uniformly sampled from a video seg-
ment. Region proposals in different frames are distinguished by
color. Video-level MIL puts region proposals from all frames into
one bag while frame-level MIL constructs a bag for each frame.
The positive instances are denoted with black shadow. Here is the
dilemma: video-level MIL suffers from monotonically increased
bag size w.r.t. the number of frames, while frame-level MIL may
contain false positive bags such as bags for V3, and V4.

the alignment of images and sentences. It reasonably as-
sumes that each image contains at least one region corre-
sponding to the sentence query. If we define an image as the
“bag,” regions as instances in the bag and language query as
the label of the bag, then the image satisfies the definition
of the positive bag in MIL: a bag is positive if at least one of
its instances is positive. However, directly extending MIL
based grounding method from image to video easily falls
into a dilemma as shown in Fig. 1. The first way is to
regard each video as a bag, which contains all region pro-
posals across frames as the instances. However, the bag size
will drastically increase as video becomes longer. We call
this brute-force video-level MIL. Another option is to con-
struct a bag for every frame, and assign the same video label
to all frame bags, but it is easy to trigger false-positive bags.
This option is named as frame-level MIL. Zhou et al. [40]
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try to jump out of the dilemma by choosing the frame-level
MIL, but weight the loss function for each frame by mea-
suring how “positive” each frame is. Namely, each frame
loss is multiplied with a positive index which is de�ned by
the similarity between the frame and the query. However,
such method suffers from a problematic penalty term, which
will indistinguishably enlarge the similarity score of both
aligned and unaligned pairs and has very sensitive hyper-
parameters.

To overcome the above limitations, we �rst compare
the performance of vanilla brute-force video-level MIL and
frame-level MIL and decide to follow the latter choice.
Then, to better conquer the downsides of Zhouet al. [40],
we propose a contextual similarity to measure the similarity
score between the frame and the language query based on
two intuitions:

1. If a sentence contains multiple queries, then each
query should focus on its most relevant frames.

2. If an object appears sparsely across frames, the no-
object frames should be insigni�cant compared with
the frames where the object appears.

In the case of MIL, the contextual similarity can be viewed
as an augmented similarity by considering the possibility
of a frame to be the true positive bag of a query. Moreover,
such possibility for one frame is calculated by looking at the
other frames in the same video, which makes it more reli-
able. By replacing ordinary frame-sentence similarity with
our contextual similarity, one can alleviate the dif�culty of
false positive bags in frame-level MIL.

Furthermore, the aforementioned methods fail to con-
sider the visual consistency in the video, which is a unique
property to video grounding; hence, we propose visual clus-
tering to leverage the temporal information better. Visual
clustering is inspired by the idea:

3. If two regions have high similarity to a common query,
then they should also be similar to each other.

In this case, the visual similarity is not restricted to the
adjacent frames, but can also work with sparsely sampled
frames in a video segment.

We conduct extensive experiments on YouCookII
dataset [41], which is the largest unconstrained instructional
video dataset available for visual grounding. Experimental
results demonstrate the effectiveness of our proposed tech-
niques compared to other state-of-the-art methods. Further-
more, we show that our techniques can also lead to im-
proved performance on RoboWatch dataset [26].

The rest of this paper is organized as follows. We review
related work in visual grounding, weakly-supervised object
localization and feature embedding in Sec. 2. We present

formal description of contextual similarity and visual clus-
tering in Sec. 3. Experimental settings and evaluation re-
sults are presented in Sec. 4. Finally, the paper is concluded
in Sec. 5.

2. Related Work

Visual grounding. Supervised image grounding has
been successfully explored in [21, 20, 37]; however, the
task requires expensive labels for box location. Recently,
weakly-supervised image grounding draws much attention
from the community. Most weakly-supervised grounding
methods can be classi�ed as either proposal-based [11, 24,
4] or proposal-free [34, 35]. Given region proposals, Karpa-
thy and Fei-Fei [11] formulated it as a ranking problem to
rank the proposals according to visual-semantic similarity
scores in a MIL fashion. Rohrbachet al. [24] encoded a
phrase as its most similar region to reconstruct the region
back to the phrase. Chenet al. [4] transferred the knowl-
edge from the off-the-shelf object detector to help phrase
grounding. For proposal-free methods, the region location
is often obtained from phrase-salient map via subwindow
search. Xiaoet al. [34] generated the salient map by re-
garding language structure as additional supervision for the
location relationship among objects. Raymondet al. [35]
conducted hypothesis tests over the existence of image con-
cept given words in a statistic view.

Weakly-supervised grounding has also been attempted
in videos [36, 10, 40]. Yu and Siskind [36] grounded sen-
tence to object in constraint lab-recorded videos. Huanget
al. [10] addressed language reference and grounding to-
gether to enhance the grounding performance with the
inspiration of graphical structure modeling [12, 38, 30]
Zhou et al. [40] extended [11] to the video domain with
frame-wise weighting and achieved the best performance so
far on video visual grounding. In this work, we follow the
proposal-based MIL methods [11, 40] due to the simplicity
and effectiveness of the MIL learning framework.
Weakly-supervised object localization. Methods, e.g.,
[8, 6, 7, 18, 29], are related to visual grounding, but they
typically localize an prede�ned object class or a video tag,
while, in visual grounding, the target can be any words or
phrases that are loosely de�ned. Most weakly-supervised
object localization problem can be formulated as a MIL
problem as well. The image that contains the label is re-
garded as positive instance and otherwise not. Among the
methods, [15, 22] have studied the weakly-supervised video
localization. Kwaket al. [15] combined object discovery
and object tracking while Prestet al. [22] extracted candi-
date spatio-temporal tubes for a better localization. Com-
paring to these methods, we propose an easier way to em-
ploy temporal information on the feature level that does not
require tracking or forming tubes, which are often compu-
tationally expensive.



Feature embedding. In metric learning, contrastive loss
[9, 31] and triplet loss [25] are widely used to enhance the
feature space with a clustering property. When it comes
to the cross-model embedding, they are still feasible with
the elements forming pairs and triplets coming from dif-
ferent modalities (e.g., language and image [11]). How-
ever, Collell and Moens [5] showed that the projection of
the source modality does not resemble the target modal-
ity, in the sense of neighborhood topology, which drives
researchers to develop more discriminative mappings. One
way is to reduce the intra-class feature variations using cen-
ter loss [33] which has been used in tasks such as face ver-
i�cation [17], and object retrieval [39]. However, center
loss typically needs supervision and cannot �t into our task.
Other methods such as the structure-preserving loss [32]
would introduce extra hyper-parameters due to the margin
and the neighborhood. Different from the above works, we
employ temporal visual consistency as an additional cue to
reduce intra-class feature variations.

3. Methodology

3.1. Problem Formulation

Given a video segment and its sentence description, we
would like to locate each query in the sentence to each
frame of the video, where the query can be either a word
or a phrase. Formally, we denote a video segment as a set
of T framesV = f Vt gT

t =1 , and each frameVt contains a
set ofN region proposalsf vt

n gN
n =1 , where the superscriptt

indexes the frames and the subscriptn indexes the propos-
als on the current frame. We denote a sentence as a set of
K queriesQ = f qk gK

k=1 , and eachqk corresponds to one
or more words in the sentence. Here, the visual feature and
query feature are all encoded into a commond-dimensional
space such thatvt

n ; qk 2 Rd.
Following [11] and [40], we de�ne the similarity be-

tween the queryqk and the regionvt
n as:

at;n
k = qT

k vt
n ; (1)

whereT denotes transpose. We de�ne the negative samples
Q0 andV0 as queries and region proposals that are neither
paired withQ nor V. Next, we introduce two approaches
for visual grounding: the brute-force video-level MIL and
the frame-level MIL. Our �nal model builds upon the latter.
Brute-force video-level MIL. Brute-force video-level
MIL regards a video as a bag and all regions across frames
in the video as the instances in the bag, and then be trained
with ranking loss on the bag level. Hence the similarity
score between the video segmentV and the descriptionQ is
written as:

S(V; Q) =
1
K

KX

k=1

max
t;n

at;n
k ; (2)

and the ranking loss with margin� is de�ned as:

L rank = max(0 ; S(V; Q0) � S(V; Q) + �)+

max(0; S(V0; Q) � S(V; Q) + �) : (3)

Intuitively, Eq. (2) transforms the region-query similarity
to video-sentence similarity, wheremax is the key opera-
tion in MIL to select the most positive instance from the
positive bag, which can be paraphrased as to select the re-
gion from the video with the highest similarity to the query.
Then the loss is constructed as a pair-wise ranking loss to
embed the aligned video-sentence pairs with higher simi-
larity than the unaligned pairs. However, such method has
a fatal drawback—the bag size will monotonically increase
as the number of frames in video increases. Nonetheless,
we still compare it with our model in Sec. 4.2.
Frame-level MIL. The frame-level MIL is an alternative
approach to the brute-force video-level MIL. Frame-level
MIL regards a frame as a bag and all regions in the frame
as the instances in the bag, and then be trained with ranking
loss on the frame level. Here, we de�ne the similarity score
between sentence and frame as:

S(Vt ; Q) =
1
K

KX

k=1

max
n

at;n
k ; (4)

and the ranking loss on each frame with margin� is:

L t
rank = max(0 ; S(Vt ; Q0) � S(Vt ; Q) + �)+

max(0; S(V 0
t ; Q) � S(Vt ; Q) + �) : (5)

Therefore, the �nal ranking loss averages over all frames:

L rank =
1
T

TX

t =1

L t
rank : (6)

Intuitively, frame-level MIL allows the queries to �nd their
most similar regions in each frame to represent the similar-
ity score. While this method has �xed bag size, it assumes
that all frames in a video segment are positive bags. This
assumption breaks when the queried object sparsely ap-
pears across frames and would trigger false positive bags, as
shown in Fig. 1. We follow this framework because it makes
use of more positive instances in a video segment; this can
potentially increase the training samples and is more �exi-
ble. Next, we show how to alleviate these drawbacks of a
vanilla frame-level MIL.

3.2. Contextual Similarity

We alleviate the false positive frame bag problem by cre-
ating a contextual similarity between frame and query; its
high-level illustration is shown in Fig. 2. In the perspective
of MIL, the contextual similarity can be viewed as a bet-
ter similarity augmented by considering the possibility of a



Figure 2. Diagram for evaluating the frame-query contextual simi-
larity score. Region-query similarity scores are calculated between
each region and the query “bread” with inner product similarity,
which is best viewed in color. A 0-1 normalization along frames
is applied to obtain its contextual gain.

frame to be the true positive bag of a query. Furthermore,
such possibility for one frame is calculated by looking at
the other frames in the same video making it more reliable.
Concretely, we start by de�ning the original similarity be-
tween the frameVt and the queryqk as:

S(Vt ; qk ) = max
n

at;n
k ; (7)

then the contextual similarity between frame and query is
de�ned as:

�S(Vt ; qk ) = S(Vt ; qk ) ~S(Vt ; qk ) ; (8)

where~S(Vt ; qk ) is expanded as:

~S(Vt ; qk ) =
S(Vt ; qk ) � min

t
S(Vt ; qk )

max
t

S(Vt ; qk ) � min
t

S(Vt ; qk )
: (9)

In fact, ~S(Vt ; qk ) is a 0-1 normalization of the original
frame-query similarity over all frames in a video segment,
but plays an important role as a weighting score over frames
so as to guide theqk to match its most correlated frames.
Multiplying such weighting score to the original frame-
query similarity yields the contextual score. Then, by av-
eraging the contextual frame-query scores over all queries
in a sentence, we obtain the sentence-frame score as:

S(Vt ; Q) =
1
K

KX

k=1

�S(Vt ; qk ) : (10)

Next, we put Eq. (10) into Eq. (5) to getL t
rank , and the

video-level ranking loss is the same as Eq. (6).
The reason to design Eq. (9) is that the~S(Vt ; qk ) guar-

antees the validity of the key frame with the highest frame-
query score in the video segment, because it corresponds

to ~S(Vt ; qk ) = 1 . And, it can directly abandon the triv-
ial frame which has the lowest frame-query score since its
~S(Vt ; qk ) = 0 . Hence, we decay the importance of each
frames by their relative importance to the key frame and the
trivial frame. Furthermore, our formulation will not intro-
duce additional hyper-parameters and is robust in training.
Also, we �nd that letting gradient propagate to Eq. (9) leads
to better performance.

3.3. Visual Clustering

Visual grounding is intrinsically a cross-model mapping
problem. We would like to map the visual and textual fea-
tures to a common space. In this sense, regions grounded by
the same query should be embedded as a neighbor structure
in feature space and will form a cluster. The visual cluster-
ing method assumes that the queried objects show similar
appearance across video frames, and their visual features
are within the same cluster. If we have region class label, it
is natural to use center loss [33], which directly drives ob-
jects in the same class to be close to the class center. How-
ever, in weakly-supervised setting, the class label for each
object is unknown. Instead, we �rst let queryqk select its
most similar region proposal in framet, and we denote the
selected region as:

v̂t;k = arg max
vn

t 2f v1
t ;:::;v N

t g
qT

k vn
t : (11)

Then we want to further cluster all the visual featuresv̂t;k

in different framet together because they all belong to the
common queryqk . Hence, we minimize the negative cosine
similarity of any two region features belonging to the same
query in a video segment, which is de�ned as:

L vis = �
X

k

X

t<t 0

cos(v̂t;k ; v̂t 0;k ) : (12)

The cluster hypothesis tries to make use of the temporal
connectivity so as to learn a more discriminative visual em-
bedding.

Nonetheless, Eq. (12) has an implicit assumption that the
queried object is required to appear in each frame of a video
segment. According to the validation set of YouCookII
dataset [40], the queried objects show up in51:32%of the
total frames, and in our experiment, such assumption does
not hurt the performance. In order to better relax such as-
sumption, we weight the visual similarity by the similar-
ity between word feature and visual feature. Therefore, the
contextual visual similarity is formulated as:

L ctx
vis = �

X

k

X

t<t 0

cos(v̂t;k ; v̂t 0;k ) ~S(Vt ; qk ) ~S(Vt 0; qk ) ;

(13)
where~S(Vt ; qk ) is de�ned in Eq. (9).


