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Abstract

In many applications (computer vision, natural language processing, speech recognition, etc.),
the curse of domain mismatch arises when the test data (of a target domain) and the training data
(of some source domain(s)) come from different distributions. Thus, developing techniques for
domain adaptation, i.e., generalizing models from the sources to the target, has been a pressing
need. When the learner has access to only unlabeled data from the target domain (and labeled data
from the source domain), the problem is called unsupervised domain adaptation. Advances in
domain adaptation can significantly increase our capability to deploy autonomous and intelligent
systems in challenging environments where uncertainty prevails.

This thesis work provides a comprehensive set of techniques with multiple levels of focus on
unsupervised domain adaptation, including learning domain-invariant feature representations in
order to eliminate the discrepancy between the source domain and the target domain, manipulat-
ing data instances to match the distributions of two domains, quantizing the “adaptabilities” of
different source domains given a particular target domain, and discovering latent domains from
heterogeneous data so the individual domains can be better and more efficiently modeled. We
demonstrate the effectiveness of the developed methods on well-benchmarked datasets and tasks
(visual object recognition, sentiment analysis, and cross-view human activity recognition).

In terms of domain adaptation algorithms, this thesis develops two complementary approaches
using kernel methods, one to infer domain-invariant geodesic flow kernels (GFKs) and the other
to directly match the underlying distributions of two domains. GFK models data by subspaces
and interpolates an infinite number of phantom domains between the source domain and the target
domain. We then use the “kernel trick’’ to average out domain-specific idiosyncrasies and arrive
at a domain-invariant kernel. Built upon GFK, we propose an approach to identifying the most
adaptable data instances of the source domain, named as landmarks, to the target domain. Due
to that the landmarks are more similar to the target domain in the sense of their underlying distri-
butions, adapting from the landmarks gives rise to better performance on the target than adapting
from the original source domain.

This thesis also contributes to other aspects of domain adaptation. We make some prelim-
inary efforts on answering the open question of how to evaluate the “adaptability” of a source
domain to the target domain. This results in a rank-of-domains (ROD) metric, which exploits
both geometrical and statistical discrepancies between two domains. Besides, this thesis raises
the concern about how to define or represent a domain with real data. While by a domain we
refer to the underlying distribution of the observed data, the distribution is often unknown. A
standard practice has been equating datasets with domains. However, our studies show that this
is not necessarily the best for the adaptation tasks. An automatic algorithm is instead proposed
to “reshape” the data into domains which are better in terms of the adaptation performance to the
target domain.

xi



To further explore kernels, which play the central role in our approaches to domain adapta-
tion, this thesis concludes by researching kernels in a probabilistic model, determinantal point
process (DPP). We propose a novel model, sequential DPP, for supervised video summarization
and derive a large-margin training algorithm for learning the kernels in DPPs.

xii
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Chapter 1

Introduction

We are at the data-centric era. There has been a rapid growth of data from various areas during
the recent years. Though it is difficult to have a complete understanding and characterization of
the “big data” phenomenon, we can gain some insights from some representative exemplars.

• Internet based companies and services have boosted the scale of publicly accessible datasets
out of most people’s imagination. There are hundreds of millions of users of Facebook,
Twitter, Youtube, etc. They (we) had contributed to the 300 petabytes (300 × 1015 bytes)
user data Facebook hosted as of Nov. 6th, 20131, have been posting more than 500 million
Tweets daily2, and have been uploading more than 432,000 hours of videos to Youtube
every day3.

• Research in both science and engineering is also generating a huge volume of observational
and/or synthesized data. It becomes necessary to collect and analyze large-scaled datasets
in order to make new discovery, to extract new knowledge, or to build more robust systems.
For instance, the recent impressive progress on visual object recognition from images and
videos is largely due to the millions of human labeled images (Deng et al., 2009) (and deep
neural networks with millions of parameters (Krizhevsky et al., 2012)).

• The “big data” also emerge from the domain of public security as a result of monitoring and
surveillance. Take London for example. About 422,000 CCTV cameras perching around
London survey happenings in the city 24/7.

There is accordingly a pressing need for scalable technologies of data management (storage,
retrieval, indexing, etc.) and data analysis. This thesis focuses on the latter, of which machine
learning plays the central role. Data analysis aims to infer useful knowledge and to make new
discovery from data. Thanks to the decades of research and industrial development on data-
centric algorithms, theories, and systems, it is reasonable to foresee many promising and exciting
opportunities revolving around data analysis.

Meanwhile, however, the work on data analysis is encountering many grand new challenges
along with the growing massive data collections. How to build models and deal with highly

1For more details please see https://www.facebook.com/notes/facebook-engineering/
presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920.

2Statistics as of May 20, 2015 from https://about.twitter.com/company.
3Statistics as of May 20, 2015 from https://www.youtube.com/yt/press/statistics.html.
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distributed data? It involves a mix of several aspects of the machine learning algorithms to answer
this question, such as distributed optimization, communication costs between different machines,
and so on. How to learn from streaming data? How shall we trade-off the optimization costs and
the generalization capabilities of machine learning algorithms?

Another major challenge is the sampling bias problem. Conventional statistical machine
learning revolves on an (overly) simplified assumption that the training data, from which the
algorithms learn, are drawn i.i.d. from the same distribution as the test data, to which the learned
models are applied. This assumption and the corresponding algorithms are fundamentally restric-
tive, being frequently challenged in numerous situations. For instance, a pedestrian detection and
avoidance computer vision system on automobiles faces very different data when weather pat-
terns change, when cameras age, or simply when people drive to new locations. In other words,
the training and test data are often mismatched.

Sampling bias is particularly severe and prevalent in modern massive data collections, whose
sub-collections often follow disparate sampling criteria. Indeed, a large collection of data may
consist of sub-collections by different research groups and companies from different collection
sources whose characteristics vary over time. These exemplify the limitations of conventional sta-
tistical learning algorithms—many empirical studies have shown that when the statistical prop-
erties change from the training to the test data, the performance of the learning systems often
degrades significantly (Torralba & Efros, 2011; Dollár et al., 2009; Daumé III & Marcu, 2006;
Blitzer et al., 2006).

As a result, practical autonomous systems inevitably suffer from the sampling bias. The
systems are often deployed to new target environments. It is unrealistic to attempt to reproduce
all sorts of the target environment when one develops the systems, not to mention that real-
life environments are often not lab-reproducible. Besides, the systems naturally degrade and
the outside environment changes over time. In sum, there is no way to completely avoid the
mismatch. Instead, it is highly desirable to have a new statistical machine learning paradigm to
explicitly deal with the mismatches in data.

This thesis concentrates on addressing this challenge in the framework of unsupervised do-
main adaptation.

1.1 Domain adaptation

Imagine that we are to deploy an Android application to recognize objects in images captured with
mobile phone cameras. Instead of demanding that users provide labels to our learning algorithms,
can we train classifiers with existing tagged images or labeled vision datasets, such as Flickr
photos, LabelMe (Russell et al., 2008), or ImageNet (Deng et al., 2009), and hope the classifiers
will still work well on mobile camera test images? See Fig. 1.1 for an illustration.

Our intuition says no. We suspect that the strong distinction between images in those datasets
and typical mobile phone images will cripple those classifiers. Indeed, a stream of studies have
shown that when image classifiers are evaluated outside of their training datasets, the performance
degrades significantly (Torralba & Efros, 2011; Dollár et al., 2009; Perronnin et al., 2010). The
culprit is clear: the visual appearance of even the same object varies significantly across differ-
ent datasets as a result of many factors, including imaging devices, photographers’ preferences,
background, and illumination. These idiosyncrasies often cause a substantial mismatch between
the training and the testing data distributions.
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Figure 1.1: Schematic illustration of unsupervised domain adaptation. The objective is to classify
unlabeled data from the target domain which has different characteristics from the source domain
where annotated data are provided. The central idea behind the approaches proposed in this thesis
is to use the labeled data to build a classifier in a domain-invariant feature space learned using
kernel methods. We use data from both domains to infer the feature space such that the adapted
classifier from the source domain will work well on the target domain.

Beyond image recognition, mismatched training and testing conditions are also abundant in
other computer vision tasks (Duan et al., 2009a; Wang & Wang, 2011; Jain & Learned-Miller,
2011; Duan et al., 2010), speech recognition (Leggetter & Woodland, 1995b; Reynolds et al.,
2000; Huang & Hasegawa-Johnson, 2008) and text classification and analysis (Blitzer et al., 2007,
2006; Jiang & Zhai, 2007; Glorot et al., 2011).

In all these pattern recognition tasks, there is a common theme. There are two distinct types
of datasets: one from a source domain and the other from a target domain. The source domain
contains a large amount of labeled data such that a classifier can be reliably built. The target
domain refers broadly to a related dataset that has different characteristics compared to the source
domain. Since conventional learning algorithms rely heavily on the assumption that data used for
training and testing are drawn from the same distribution, they are inadequate in the face of
such mismatched domains. Thus, the main objective is to adapt classifiers trained on the source
domain to the target domain to attain good performance there4.

How can we build classifiers and other statistical machine learning models that are robust
to mismatched distributions? Techniques for addressing this challenge have been investigated
under the names of domain adaptation, covariate shift, or transfer learning (Shimodaira, 2000;
Daumé III & Marcu, 2006; Pan & Yang, 2010; Gretton et al., 2009). When there are no labeled
data from the target domain to help learning, the problem is called unsupervised domain adap-
tation (Blitzer et al., 2007, 2006; Gopalan et al., 2011; Gong et al., 2012b; Chen et al., 2011a). In
contrast, when some labeled data from the target domain are accessible, the problem is similar to
semi-supervised learning and is referred to as semi-supervised domain adaptation (Daumé III
et al., 2010; Bergamo & Torresani, 2010; Saenko et al., 2010). In either case, however, the labeled
target data alone are insufficient to construct a good classifier. Thus, how to effectively leverage
unlabeled target data is key to domain adaptation.

4Note that we assume the sets of possible labels are the same across domains.
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1.2 Contributions

This thesis work provides a comprehensive set of techniques with multiple levels of focus on
unsupervised domain adaptation, including learning domain-invariant feature representations in
order to eliminate the discrepancy between the source domain and the target domain (Chapter 4),
manipulating data instances to match the distributions of two domains (Chapter 5), discovering
latent domains from heterogeneous data so the individual domains can be better and more ef-
ficiently modeled (Chapter 7), and quantizing the “adaptabilities” of different source domains
given a particular target domain (Chapter 6).

In terms of the methodologies behind the thesis work, we use kernel methods to develop
our solutions to the research questions around domain adaptation. One of our approaches gives
rise to a new kernel function which is invariant to the mismatched domains, while the others
take advantage of the kernel embedding of probabilistic distributions. We shall provide a gentle
tutorial to the kernel methods in Chapter 3. Moreover, in Chapter 8 we explore more applications
of the kernels in probabilistic models for which we derive a new large-margin learning algorithm.

1.3 Thesis outline

The remaining of this thesis is outlined as follows.

Chapter 2 is a survey on unsupervised and semi-supervised domain adaptation. We present the
existing work in the literature by organizing them to three broad categories, re-weighting
data instances, learning feature representations, and adapting background or source models.

Chapter 3 gives a gentle tutorial to kernel methods. We particularly describe the “kernel trick”
and the kernel embedding of distributions in detail.

Chapter 4 presents our geodesic flow kernel (GFK) to infer new feature (kernel) representations
that are resilient to the mismatches between two domains.

Chapter 5 builds upon GFK and introduces a novel inherent structure in domain adaptation,
landmarks. The key insight is that not all instances from the source domain are created
equally in terms of adaptability to the target domain. By automatically identifying and
leveraging the landmarks we will have an easier domain adaptation task than the original
one which involves the whole source domain.

Chapter 6 defines the rank-of-domains (ROD) metric used to measure the adaptabilities of dif-
ferent source domains to the target domain.

Chapter 7 examines the notation of domains. We show that it is essentially hard to manually
group visual data (images, videos, etc.) to represent the underlying domains. Instead, we
develop a nonparametric method to automatically reshape given datasets to domains.

Chapter 8 exploits kernel methods in the probabilistic model, determinantal point process (DPP).
We develop a large-margin learning objective and derive a new DPP model to handle the
sequential structure in video data.
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Chapter 9 demonstrates the effectiveness of the developed methods on well benchmarked datasets
and tasks (visual object recognition, sentiment analysis, and cross-view human activity
recognition).

We conclude this thesis and remark on the future directions by Chapter 10.

1.4 Previously published work

Chapter 4 and Chapter 6 draw significantly from our work published in CVPR 2012 (Gong et al.,
2012b) and IJCV 2014 (Gong et al., 2014b). Chapter 5 is mainly based on our paper of ICML
2013 (Gong et al., 2013b). Chapter 7 corresponds to our NIPS 2013 paper (Gong et al., 2013a).
Chapter 8 draws from our NIPS 2014 (Gong et al., 2014a) and UAI 2015 (Chao et al., 2015).
Some of the results in this thesis have also been presented at the NIPS 2012 Workshop of Large
Scale Visual Recognition and Retrieval (Gong et al., 2012a) and the ECCV 2014 Workshop of
Transferring and Adapting Source Knowledge (TASK) in Computer Vision.
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Chapter 2

Domain Adaptation: A Survey

Domain adaptation has been extensively studied in many areas, including statistics and machine
learning (Shimodaira, 2000; Huang et al., 2006; Ben-David et al., 2007; Pan & Yang, 2010),
speech and language processing (Daumé III, 2007; Blitzer et al., 2006; Leggetter & Woodland,
1995b), and more recently computer vision (Bergamo & Torresani, 2010; Gopalan et al., 2011;
Saenko et al., 2010; Kulis et al., 2011). In this chapter, we provide a survey on domain adaptation
and focus on the methodologies developed in the literature, regardless of their specific appli-
cation domains. Among them, of particular relevance to our work are those learning domain-
invariant feature representations and thus enabling effortlessly transferring statistical machine
learning models from the source domain to the target domain (Ben-David et al., 2007; Blitzer
et al., 2006, 2007; Daumé III, 2007; Pan et al., 2009).

We begin with a widely used assumption in domain adaptation called covariate shift. It was
first proposed in the seminal work (Shimodaira, 2000) in the context of learning predictive den-
sities. Through examining the bias and variance of the maximum likelihood estimators (MLEs),
Shimodaira derived a direct solution to covariate shift, instance re-weighting. Most early works
on domain adaptation center around how to effectively estimate the instance weights (Sugiyama
& Müller, 2005; Huang et al., 2006; Sugiyama et al., 2008; Yamada et al., 2011). In Section 2.1,
we describe the covariate shift assumption under empirical risk estimation, a broader context than
MLE, and review the corresponding instance re-weighting approaches.

While instance re-weighting directly follows the statistical analysis, it does not offer the mod-
eling flexibility of incorporating the domain knowledge of data representations. Some features of
the data are generic across different domains and hence can significantly ease the adaptation if we
train machine learning models upon them. Take sentiment analysis of user reviews of different
products for instance. Some very predictive words like “highly recommend” and “not worth it”
show up in the reviews of various products. We review the feature learning based approaches to
domain adaptation in Section 2.2.

Additionally, in Section 2.3 we visit some methods which adapt either a “background” model
or the model trained on the source domain to the target domain. In probabilistic modeling, this
can be straightforwardly implemented by taking the models on the source domain as the prior of
the models on the target domain. Besides, it is also interesting to draw some analogy between
domain adaptation and multi-task learning, regarding the domains as different tasks. Finally,
domain knowledge acts as extra cues to facilitate adapting source classifiers to the target in some
specific applications.
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2.1 Covariance shift and instance weighting

In statistics, a covariate is a variable which is possibly predictive of the outcome under study.
It is also termed as explanatory variable, independent variable, or predictor in some scenarios.
Covariate shift refers to the situation that the marginal distribution PS(x) of the source domain
S differs from PT (x), the marginal distribution of the target domain T for evaluation, while the
conditional distribution P (y|x) = PS(y|x) = PT (y|x) is shared between the two domains. This
is perhaps the most widely used assumption in domain adaptation, either implicitly or explicitly.
Extensive empirical studies show that even if the assumption does not strictly hold, the algorithms
proposed using the assumption still perform reasonably well on the target domain.

As a special form of domain adaptation, covariate shift was first studied in (Shimodaira,
2000). Before that, it was used to detect model mis-specification (White, 1981) of nonlinear
regression models. It also has some overlap with sample selection bias (Heckman, 1979; Vella,
1998), which mainly refers to non-random selections of individuals, groups, or data from the
population intended to be analyzed.

Next we apply the covariate shift assumption to the principle of empirical risk minimization
and arrive at an instance re-weighting scheme. Similar derivations can be found in (Shimodaira,
2000) and (Huang et al., 2006).

2.1.1 Covariate shift in empirical risk minimization

Consider supervised learning problems via empirical risk minimization (ERM). We have an input
space X and an output space Y . The learner in general aims to find an optimal decision function
h? : X 7→ Y from a hypothesis set H, so as to minimize the generalization error (also called the
expected risk),

R(h;L,P ) = E(x,y)∼P [L(h(x), y)] , h ∈ H (2.1)

where L : Y × Y 7→ R is a loss function and P (x, y) is a joint distribution of x ∈ X and y ∈ Y .
Note that the distribution P (x, y) is often unknown to the learner. Instead, the learner re-

ceives a training sample S = {(xm, ym)}Mm=1 drawn i.i.d. according to P (x, y), and can hence
approximate R(h;L,P ) using the empirical risk,

Remp(h;L, S) =
1

M

M∑
m=1

L(h(xm), ym), (2.2)

which is an unbiased estimator of the expected risk R(h;L,P ). The learner then returns a hy-
pothesis ĥ ∈ H according to the ERM principle, i.e.,

ĥ← arg min
h∈H

Remp(h;L, S) + λΩ(h),

where Ω(h) is a regularizer and the (hyper-)parameter λ > 0 balances the strengths of the empir-
ical risk and the regularization term.

The ERM hypothesis ĥ achieves the minimal risk on the observed training sample S, while
the most of interest is the true risk under the distribution P . Fortunately, the “goodness” of ĥ
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can be bounded by the sample size M and the complexity or capacity of the hypothesis set H
measured in various forms (Vapnik, 2000; Mohri et al., 2012).

The ERM principle becomes more involved in domain adaptation. Denote by S and T the
source and the target domains, respectively, associated with joint distributions PS(x, y) and
PT (x, y) over X × Y . The learner receives a labeled sample S = {(xm, ym)}Mm=1 drawn
i.i.d. from the source domain according to the source distribution PS(x, y), and an i.i.d. sam-
ple T = {(xn, yn)}Nn=1 from the target domain according to the target distribution PT (x, y).
The sample T of the target domain is either too small to give rise to a reliable approximation of
the expected risk, or some or even all of its labels {yn}Nn=1 are not revealed to the learner.

Motivated by importance sampling, we can harvest the source sample S to estimate the risk
of the target,

R(h;L,PT ) = E(x,y)∼PT [L(h(x), y)] (2.3)

= E(x,y)∼PS

[
PT (x, y)

PS(x, y)
L(h(x), y)

]
(2.4)

= R(h;Lω, PS), (2.5)

where we arrive at the expected risk on the source domain but with a weighted loss function
Lω(x, y) = ω(x, y)L(x, y). The weight is ω(x, y) = PT (x,y)

PS(x,y) = PT (x)
PS(x) under covariate shift, so

in what follows we denote by ω(x) the weighting function ω(x, y). The existence of the instance
weight ω(x) depends on the following conditions.

Assumption 1 PT (x) has the support within that of PS(x).

Assumption 2 PS(x) is strictly positive over the support of PT (x). Note that since one has to
use the source sample S = {(xm, ym)}Mm=1 to approximate the expected riskR(h;Lω, PS)
and PS(xm, ym) > 0 for all (xm, ym) ∈ S, this assumption is practically mild.

In practice, often neither PS(x) nor PT (x) is known by the learner. As a result, one has to
estimate the instance weights before calculating the empirical risk of the target using the source
sample (cf. eq. (2.5)). To this end, Shimodaira discussed estimating PS(x) and PT (x) using para-
metric or nonparametric methods (Shimodaira, 2000). However, density estimation easily suffers
from the curse of dimensionality. Next, we review some methods on directly learning the weights,
without the intermediate step of estimating the source or the target marginal distributions.

2.1.2 Directly estimating instance weights

Observing that ω(x)PS(x) = PT (x), we can hence learn a weighting function β(x) ≈ ω(x)
from the data, such that it minimizes the divergence between β(x)PS(x) and PT (x), or between
β(x) and PT (x)/PS(x), under some constraints,

min
β(x)

D(β(x)PS(x), PT (x)), s.t., β(x) ≥ 0, Ex∼PS(x)β(x) = 1 (2.6)

where D(·, ·) is some discrepancy measure like KL-divergence. Obviously ω(x) is among the
best solutions {β?(x)} to eq. (2.6). If D(·, ·) is a metric and is (strictly) convex (e.g., the maxi-
mum mean discrepancy shown below), we will have a unique solution β?(x) = ω(x). Therefore,
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the quality of the directly estimated instance weights depend on which discrepancy measure to
use and how to deal with the unknown distributions PS(x) and PT (x) by the samples S and T ,
respectively.

Maximum mean discrepancy One of the most popular approaches to directly estimating ω(x)
is by the maximum mean discrepancy (MMD) (Huang et al., 2006; Gretton et al., 2009). The
main idea is to define the MMD measure between two distributions in a Reproducing Kernel
Hilbert Space (RKHS). We provide the details of MMD here considering that we shall use it in
our approaches in the following chapters.

Abuse the notationH a little bit and use it to denote an RKHS associated with a characteristic
kernel function k(·, ·) (e.g., Gaussian RBF) (Sriperumbudur, 2010). The following results hold.

• The embedding µ[PS(x)] is injective,

µ[PS(x)] , Ex∼PS [k(x, ·)], µemp[XS ] ,
1

M

M∑
m=1

k(xm, ·) (2.7)

where µemp[XS ] is correspondingly the empirical embedding of µ[PS(x)]. Here we use the
source marginal distribution PS(x) for illustration, but please beware that the conclusion
holds for all distributions.

• The so called maximum mean discrepancy (MMD)1

MMD(PS(x), PT (x)) = ‖µ[PS(x)]− µ[PT (x)]‖H (2.8)

MMDemp(XS , XT ) =

∥∥∥∥ 1

M

M∑
m=1

k(xm, ·)−
1

N

N∑
n=1

k(xn, ·)

∥∥∥∥∥
H

(2.9)

is a metric, implying that MMD(PS , PT ) = 0⇔ PS = PT .

Huang et al. used the (empirical) MMD for the distribution discrepancy in eq. (2.6) to learn
the instance weights (Huang et al., 2006). The resulting problem is a quadratic programming.
Similar to other kernel methods which have the nice property of handling nonlinearity in linear
forms, MMD offers a “linear” method to compare the high-order statistics of two distributions.
In domain adaptation, it has been used not only to learn the instance weights (Huang et al., 2006;
Zhang et al., 2013; Sun et al., 2011), but also to develop transfer component analysis (Pan et al.,
2009), transfer multiple kernel learning (Duan et al., 2012a), discovering landmarks (Gong et al.,
2013b) and latent domains (Gong et al., 2013a), etc.

Despite of the popularity of MMD, it is notoriously hard to choose the optimal kernel(s) for
MMD (e.g., how to set the bandwidth in Gaussian RBF) in domain adaptation, considering that
there are not sufficient labeled data in the target domain for cross-validation. There exist some
attempts to tackling this issue (Cortes et al., 2008; Gretton et al., 2012; Sriperumbudur et al.,
2009; Iyer et al., 2014; Yu & Szepesvári, 2012). However, they are often limited to specific ap-
plication scenarios. Further, the theory analyses in these works are, unfortunately, not refined

1The name of maximum mean discrepancy was termed by (Gretton et al., 2006), probably because MMD can be
derived from the integral probability metric (Müller, 1997) which involves a supremum operation.
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enough; the bounds are unrelated with the choice of the kernel as long as the kernel is charac-
teristic or universal (Steinwart, 2002b). As an alternative to selecting the optimal kernel, we use
a cohort of Gaussian RBF kernels to compare two domains at different scales. The solution to
the domain adaptation problem combines the output obtained from all the scales. This approach
introduces extra computation costs in the exchange of avoiding choosing a single kernel. Details
are presented in Chapter 5.

Parameterizing the instance weight ω(x) Sugiyama et al. used the Kullback-Leibler diver-
gence for the discrepancy between PT (x) and β(x)PS(x) in eq. (2.6) (Sugiyama et al., 2008).
Additionally, the authors also parameterized the instance weighting function β(x) by a linear
combination of some non-negative basis functions,

β(x) =

b∑
l=1

αlψl(x), ψl(x) = RBF(x,xnl
), xnl

∈ T , (2.10)

where each basis function ψl(x) is pre-defined as a Gaussian RBF kernel centered around a data
point randomly selected from the target domain. The authors name this method as Kullback-
Leibler Importance Estimation Procedure (KLIEP).

Thanks to this form of parameterization, KLIEP reduces the number of unknowns from M, the
number of training instances of the source domain, in MMD to b, the number of basis functions.
Besides, the weighting function β(x) can be extended out of the training sample. One benefit of
the out-of-sample extension is that one can use cross-validation to tune the (hyper-)parameters —
we can compute the instance weights of the validation set by eq. (2.10). In contrast, it is unclear
how to apply cross-validation to MMD.

This form of parameterizing β(x) is also used in (Kanamori et al., 2009a,b), where the dis-
crepancy is specified as the squared errors between β(x) and PT (x)/PS(x). The overall formu-
lation, called LSIF, is a quadratic form. It is computationally more efficient than KLIEP.

LSIF is carefully analyzed and extended in several aspects. In (Kanamori et al., 2009a,b), the
authors also developed an unconstrained version called uLSIF, which comes with a closed-form
solution. Later, uLSIF is extended to rectify the pitfall that ω(x) = PT (x)/PS(x) could be
arbitrarily large at some x where PS(x) is small (Yamada et al., 2011). The solution is to replace
PS(x) by P γS = (1 − γ)PS(x) + γPT (x), 0 < γ < 1, such that the new instance weighting
function is always upper-bounded by γ−1.

2.1.3 Modeling assumptions analogous to covariate shift

There are some other modeling assumptions in domain adaptation which share the same spirit as
covariate shift and also lead to natural solutions by re-weighting the source instances. We briefly
discuss two of them, sample selection bias and target or conditional shift.

Sample selection bias Covariate shift has some overlap with the sample selection bias prob-
lem (Heckman, 1979; Vella, 1998), which in statistics refers to the situation that the observed
sample is not i.i.d. selected from the population. In fact, the sample selection bias problem re-
duces to covariate shift if we assume that the selection bias is independent of the labels of the
data.
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We can understand the sample selection bias as a special type of domain adaptation problems.
Particularly, the plenty of labeled source data correspond to the observed and biased sample and
the target domain corresponds to the population. A non-i.i.d. sampling process is assumed as
follows using a selection variable s ∈ {0, 1}.

• An instance (xi, yi) is firstly drawn according to the target distribution PT (x, y).

• It is then put in the source domain with probability P (s = 1|xi, yi).

Assuming that the selection variable is independent of y, we have

PS(x) ∝ PT (x)P (s = 1|x) and ω(x) =
PT (x)

PS(x)
∝ 1

P (s = 1|x)
(2.11)

where the latter is the instance weight derived in eq. (2.4) under the ERM principle. Note that this
implies that the conditional distribution P (y|x) is shared by the source and the target domains,
reducing to covariate shift. It is worth pointing out that, however, Assumption 1 in Section 2.1.1
becomes more stringent since here the source and the target share the same support due to the
sample selection process.

There has been a rich line of work on correcting the sample selection bias in statistics as early
as 1970s (Heckman, 1979; Vella, 1998). In machine learning, perhaps Zadrozny’s work (Zadrozny,
2004) was the first to examine how different classifiers could be affected by the sample bias. The
analyses were then improved in (Fan et al., 2005).

To correct the sample bias, the above mentioned methods for covariate shift are in general
applicable. Besides, the selection process actually hints a very simple method to estimate the
instance weight through ω(x) ∝ 1/P (s = 1|x), where P (s = 1|x) can be implemented as a
discriminative classifier to classify the source sample {xm} versus the target sample {xn}. This
is utilized in (Bickel & Scheffer, 2007; Bickel et al., 2007). Ren et al. proposed to correct the
bias locally, within the clusters of data (Ren et al., 2008). The idea is to cluster the data from
both domains and use the target data to re-balance the biased source data in each cluster. Liao et
al. introduced an auxiliary variable for each source data instance to offset the target classifier’s
decision value (Liao et al., 2005). These variables are learned together with the parameters of
the classifiers. Beyond correcting the sample bias in learning classifiers, Dudı́k et al. studied it in
maximum entropy density estimation (Dudı́k et al., 2005).

Target shift and conditional shift Zhang et al. examined some new assumptions in domain
adaptation by drawing the motivation from causality (Zhang et al., 2013). One is called target
shift. Namely, the marginal distributions of PS(y) and PT (y) are different, while the “causal”
distributions P (x|y) are (almost) the same across the two domains. The other scenario is con-
ditional shift. This refers to that the source and the target have different “causal” distributions
PS(x|y) and PT (x|y), respectively, while P (y) remains the same in both domains. The au-
thors show that the target shift and conditional shift can be solved exactly for some families of
distributions. The adaptation algorithm follows the instance weighting scheme we described in
Section 2.1.1. It is worth noting that the target shift and conditional shift echo the causal learn-
ing in (Schölkopf et al., 2012). Besides, the target shift situation also occurs in learning from
imbalanced data (Kubat & Matwin, 1997), where a few classes dominate the training set. Some
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methods dealing with the imbalanced data could therefore be extended to solve the target shift
problem, and vice versa.

2.1.4 Downside to instance weighting

We have seen that the covariate shift assumption leads to a natural solution, instance weighting,
under the empirical risk minimization principle. Nonetheless, instance weighting does not always
help domain adaptation.

If the true decision function f : X 7→ Y is realizable and is covered by the hypothesis set
H, there is no need of weighting the source instances. Instead, the optimal solution is to simply
learn towards f solely on the source domain and then apply it to the target due to that the condi-
tional distribution P (y|x) is shared by the two domains. Some works try to formally formulate
under which condition instance weighting is unnecessary (Shimodaira, 2000; Wen et al., 2014).
The theory analyses (Cortes et al., 2008, 2010) have provided some generalization bounds and
insights to this situation. However, it is still unclear how to detect such situation from real data.

The experimental results of instance weighting are mixed. As pointed out by Gretton et
al. (Gretton et al., 2009), the MMD based instance weighting approach mainly improves the
adaptation performance of simple models. It does not benefit high-capacity models too much. In
other words, instance weighting is able to save the computation cost by letting one use simpler
models (Storkey, 2009).

Instance weighting is not flexible in modeling the intrinsic structures in data. In some applica-
tion domains, the data favor some special structures which could ease the adaptation of classifiers.
For example, in NLP some predictive features are generic across different domains. In computer
vision, the data often have low-rank or manifold properties. To exploit such structures, an alter-
native line of research works on learning feature representations for domain adaptation.

2.2 Feature learning approaches to domain adaptation

The high-level objective of learning features for domain adaptation is to map the input representa-
tions x ∈ X to new feature representations z ∈ Z , such that 1) the source and the target domains
are distributed about the same and 2) the discriminative information is preserved as much as pos-
sible — otherwise one may easily dump a new space Z satisfying 1) but being useless in terms
of the classification tasks. Due to the scarce labels from the target domain, the mapping rarely
relies on the labeling information of the target. In other words, the feature learning approach
often implicitly involves the covariate shift assumption in the learned feature space; the learner
tries to match PS(z) with PT (z) as much as possible while assuming that P (y|z) is shared by
the source and the target domains.

We next review some representative feature learning approaches. They exploit various struc-
tures or properties in the data of different domains to facilitate the adaptation.

2.2.1 Domain-generalizable versus domain-specific structures

In NLP tasks, for instance the part of speech tagging where we want to identify words as nouns,
verbs, determiners, etc., the word-based features often have the following property. Some features
are strongly predictive (e.g., “the” is a determiner) no matter in the source domain or in the target
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domain, while others are more discriminative in one domain than in the other (e.g., “monitor”
likely implies a noun in IT product reviews and could be a verb in business magazines). This
kind of structure also occurs in other application domains. In visual object recognition, the data
often lies on a low-dimensional manifold or subspace. There are often overlaps between the
underlying manifolds or subspaces of the source and target domains.

Therefore, a potential solution to domain adaptation is to identify those domain-generalizable
feature representations and use them to build classifiers. However, this necessarily loses some dis-
criminative power in the data. As shown in the empirical study (Blitzer et al., 2011) as well as our
own experiments (cf. Table 9.1), the corresponding performance is about the same or only slightly
better than no adaptation if we limit the classifiers to the scope of the domain-generalizable fea-
tures only. A better strategy, which has been verified in many empirical studies, is to find the
correspondence between the domain-specific and domain-generalizable structures, so that the
correspondence information is used together with the generalizable features for training domain-
invariant models.

Some of the existing works explicitly separate the domain-specific information from the
generalizable structures before learning any correspondence between them. Blitzer et al. pro-
posed to couple different views (subsets) of the features using canonical correlation analysis
(CCA) (Blitzer et al., 2011). The source or target specific features are approximately estimated
by their projections to the subspace which is orthogonal to the one shared by the two domains.
Their approach is able to handle target features that have no support in the source domain at all.
Li et al. used a generative model to generate documents using either shared or specific topics.
The correlation matrix between shared and specific topics are therefore computable using the
learned probabilistic distributions (Li et al., 2012). They map the domain-specific topics towards
the shared ones using the correlation matrix. Pan et al. separated the shared features of two do-
mains from the data by their appearing frequencies in the domains, their mutual information with
the domain labels, and other heuristics (Pan et al., 2010). A bipartite graph is then constructed
with edges connecting the shared features and the domain-specific ones. The correspondence is
encoded as the Laplacian spectrum of the graph. A similar idea is explored in (Dai et al., 2009)
by constructing graphs that encode more involved interplays among features; the graphs connect
three kinds of nodes, data instances, features, and labels.

Alternatively, we can also implicitly model the correspondence between domain-generalizable
and domain-specific features without actually separating them. In a surprisingly simple method,
Daumé III (Daumé III, 2007) augmented the features of the source domain by xm 7→ [xm;xm; 0]
and the features of the target domain by xn 7→ [xn; 0;xn]. Consider a linear classifier. The sec-
ond block of the augmented features encourages the classifier to use source-only information and
the third block corresponds to the target-only information. Another popular form of mapping
function is x 7→ [x,Θx], where Θ takes the responsibility of correlating target-specific structure
with the other features which are equally predictive to the class labels across domains.

Different methods have been proposed to learn Θ. One of the most popular methods is struc-
tural correspondence learning (SCL) (Blitzer et al., 2006). It follows the argument of (Ando &
Zhang, 2005) and extends the method there to domain adaptation. The basic claim is that if some
predictive structures (features) perform well in auxiliary tasks that are related with the main task,
then those structures will very likely give rise to good performance on the main task as well. SCL
uses “pivot” features to create several binary classification tasks. The mapping Θ is decomposed
using SVD from the weights of those binary classifiers. Blitzer et al. improved SCL in (Blitzer
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et al., 2007) by filtering out good pivot features using their mutual information with the class
labels. Tan and Cheng further improved it by weighting the features and instances (Tan & Cheng,
2009). SCL also finds its applications in cross-language text classification (Prettenhofer & Stein,
2010; Margolis et al., 2010). In (Chen et al., 2009), Chen et al. learned Θ by minimizing the
MMD (cf. Section 2.1.2) between two domains (However, they used a linear kernel, which is not
characteristic, in MMD).

Discussion In general, the feature learning methods reviewed above outperform the instance
weighting approaches according to the reported experimental results. The domain-generalizable
and domain-specific features are easy to identify in some applications like NLP tasks. However, it
becomes difficult to do so in other application domains like speech and computer vision; instead,
implicitly modeling the correspondence by x 7→ [x; Θx] is more appealing.

Note that both explicitly and implicitly modeling the correspondence result in linear trans-
formations of the input space. Though one may wonder the domain discrepancy could be far
more complicated than any linear transformations, the above reviewed methods are actually ef-
fective on real datasets. Besides, it is often straightforward to use kernel methods to introduce
nonlinearity to the linear algorithms. The readers are referred to Section 3.1.3 for an instance.

Beyond the notions of domain-generalizable and domain-specific features, one can also di-
rectly learn a (linear) transformation to map the input X to a new feature space Z , under the
principle that in the new feature space the two domains should be statistically close and the dis-
criminative capability of the data is preserved. This can be achieved by exploring other types of
structures (low rank, cluster, sparsity, etc.) in the data.

2.2.2 Low-rank structure

The low-rank structure prevails in many applications. Most perceptual data (e.g., images, speech
signals, etc.) actually lie on low-dimensional manifolds or subspaces. In domain adaptation, it
becomes effective to map the data to some low-dimensional spaces which minimize the statistical
difference between two domains. In (Baktashmotlagh et al., 2013), Baktashmotlagh et al. learned
a subspace projection (an orthonormal matrix) W such that the projected data x 7→ Wx are
similarly distributed across the domains. They minimize the MMD between the two domains
using Gaussian RBF and polynomial kernels. An intra-class scatter term is included to take care
of the discriminative information. Shu et al. exploited a locality-preserving embedding which
is shared by the data from both domains (Shu et al., 2014). Guo and Xiao learned different
subspaces for the two domains (Guo & Xiao, 2012). However, their method only considers the
case that the source and target data are paired up (e.g., a document and its translated version in
another language). The low-rank structure could also be as simple as a subset of the features, as
studied by Satpal and Sarawagi in the conditional random field (Satpal & Sarawagi, 2007). In a
similar spirit, a dimension reduction algorithm is developed in (Wang et al., 2008).

The so called transfer component analysis (TCA) (Pan et al., 2009) learns a subspace of the
empirical kernels, in contrast to the data in the original input space, by minimizing the domain
discrepancy MMD and maximizing the data variance. Baktashmotlagh et al. proposed to measure
two distributions on the statistical manifold (Baktashmotlagh et al., 2014). They showed better

15



experimental results than using the counterpart MMD. However, the resulting problem is non-
convex and inefficient to solve for large-scale data. Fernando et al. found a mapping matrix
between two domains by examining their respective subspaces (Fernando et al., 2013).

2.2.3 Sparsity structure

Sparse coding is a popular type of feature learning approaches (Aharon et al., 2006). It has
been studied in and applied to various applications. The corresponding optimization algorithms
are well-studied, making it a computationally appealing technique. Following the notations
in (Aharon et al., 2006), let the example set be Y = [y1, · · · ,yN ] ∈ Rn×N . Sparse coding
tries to find a dictionary D ∈ Rn×K and the sparse representations X = [x1, · · · ,xN ] ∈ RK×N
of Y, by solving the following problem,

min
D,X
{‖Y −DX‖2F } subject to ∀i, ‖xi‖0 ≤ T0, (2.12)

where T0 is the parameter controlling the sparsity of the new representations X.
When it comes to domain adaptation, one would like to learn the representations of both do-

mains such that the domain discrepancy is minimized under the new representation. The authors
of (Long et al., 2013) introduced two regularizers upon the new representations to learn. One
is a graph smooth term. The other is to match two domains by MMD. A third term, similar to
the objective function of SVM, is introduced in (Shekhar et al., 2013). The overall formulation
has to be solved alternatively. Zheng et al. tried to maximize the data variance and cross-domain
correlation and meanwhile to learn the sparse coding (Zheng et al., 2013). Huang and Wang
proposed a coupled dictionary learning approach for the domains which are paired up (Huang &
Wang, 2013), the same setting as studied in (Guo & Xiao, 2012). Two coupled dictionaries are
learned simultaneously and only the representations of the two domains are matched up as close
as possible.

2.2.4 Averaging intermediate feature representations

Recently, a new line of approaches to domain adaptation achieves good performance on the object
recognition tasks. They model the domain shift from the source domain to the target domain by
some intermediate “phantom” domains. Say we represent by two subspaces the source and the
target domains, respectively. One can then find the intermediate subspaces interpolating between
those two. These interpolated subspaces can be regarded as the representations of the phantom
domains. If we project a data instance x into all of these subspaces, the projected overall features
are analogous to that of (Daumé III, 2007); the new feature representations contain information
of the source, the target, and the intermediate domains as well. Therefore, they enforce the
classifiers to take care of all such information, instead of biasing towards any particular domain.
This subspace-based interpolation is employed in (Gopalan et al., 2011, 2014), and later applied
to location classification from images (Gopalan, 2013). Since the new representations have a
very high dimensionality, often a dimension reduction step is required before actually training
the classifiers. In contrast, we develop a more efficient and effective kernel method to harvest an
infinite number of intermediate phantom domains in Chapter 4. Zheng et al. also explored the
kernel method (Zheng et al., 2012) but did not examine the discriminative subspaces (e.g., learned
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by partial least squares) as we do. An interesting extension was proposed by Shrivastava et al.
in (Shrivastava et al., 2014). Considering that a single subspace might be inadequate to represent
a whole domain, the authors model each class of the source domain by a subspace, which is then
associated with a subspace from the target domain. The domain shift is then modeled by the
parallel transportations from all the source subspaces to their corresponding target subspaces.

In addition to the subspace based interpolation, Ni et al. recursively minimized the recon-
struction error and obtained a series of intermediate representations (Ni et al., 2013). Chopra et
al. randomly selected different proportions of the data from the two domains to build intermediate
domains (Chopra et al., 2013).

2.2.5 Other feature learning approaches to domain adaptation

A metric learning approach was modified from the information theoretic metric learning (Davis
et al., 2007) to account for the mismatch between two domains (Saenko et al., 2010). It was later
extended to a kernel version (Kulis et al., 2011). These approaches require a few labels from
the target domain. We regard them as feature learning approaches since we can decompose the
covariance matrix in the Mahalanobis distance and use it as a feature mapping function.

Most recently, deep learning has been applied in the domain adaptation problems and has
achieved impressive performance (Glorot et al., 2011; Chopra et al., 2013; Donahue et al., 2014;
Oquab et al., 2014). Chen et al. derived a closed-form method (Chen et al., 2012) from the deep
auto-encoder. So far these approaches mainly rely on a sufficiently large and labeled dataset from
the source domain. Indeed, in the ideal case if we had enough labeled data, there would be no
domain adaptation issues at all since the labeled data could cover all the characteristics in the
target domain. However, it remains questionable how the “deep” methods could be utilized when
there are limited training data from the source domain.

In a broader setting, the methods aiming to learn robust classifiers can be readily applied to
domain adaptation. There the main objective is to avoid overly training any particular features
such that the classifier is robust to missing features or mismatched features in the test stage. Some
popular techniques include re-weighting features (Kołcz & Teo, 2009; Dekel et al., 2010; Dredze
et al., 2008) and injecting noises to the data (Globerson & Roweis, 2006; Teo et al., 2007).

2.3 Directly adapting models to the target domain

The objective of domain adaptation is to have a generative or discriminative model to perform
well on the target domain. In the traditional supervised learning (i.e., assuming the training and
test data are i.i.d. drawn from the same underlying distribution), there are several well estab-
lished and practically well performed models, such as SVMs, Boosting, hidden Markov models
(HMMs), and so on. Depending on which models to use, one may derive different adaptation
techniques to generalize these models to the target domain. Such approaches are often particu-
larly tailored for the models (e.g., SVMs) to be adapted. They are somehow “orthogonal” to the
feature learning approaches, in the sense that one can either learn features before adapting the
models or couple these two stages into a unified framework.

When dealing with probabilistic models, it is straightforward to take the model learned from
the source domain as the prior for the target domain (Raina et al., 2006; Chelba & Acero, 2006;
Dixit et al., 2011; Ciaramita & Chapelle, 2010; Reynolds et al., 2000). Sometimes the models
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of the source domain are referred to as the “background” models. As for non-probabilistic ap-
proaches, often one has to fine-tailor the adaptation strategies according to the characteristics of
the models for domain adaptation. Some representative methods include adapting SVMs (Duan
et al., 2009a; Ma et al., 2013), Boosting (Dai et al., 2007b; Pardoe & Stone, 2010; Habrard et al.,
2013), naive Bayes (Dai et al., 2007a; Tommasi & Caputo, 2013), and so on. Another popular idea
is the so called “self-paced” learning. One can label the target data using the source classifiers.
High-confident labels are then merged to the source domain to retrain the classifier. This pro-
cess can be repeated many times until convergence (Chen et al., 2011b; Bruzzone & Marconcini,
2010; Tang et al., 2012; Bacchiani & Roark, 2003; Gaidon & Vig, 2014; Rosset et al., 2004).
However, such methods have the risk of being contaminated by wrongly labeled data, which may
be serious when the two domains differ to a large degree. One can also learn the models and fea-
ture representations simultaneously, such as the kernel-based SVM methods (Duan et al., 2012a,
2009a; Shi & Sha, 2012; Hoffman et al., 2013). Due to the coupled feature mapping parameters
and the model parameters, the resultant formulations are in general non-convex. Alternative or
EM-style optimization is thus required.

2.4 Some open questions and other domain adaptation scenarios

So far we have been focusing on the domain adaptation setting involving a single source domain
and the target domain. Next, we discuss other related scenarios and some open questions in
domain adaptation.

In real applications, we may have multiple labeled datasets as the potential source domains
and some unlabeled data from the target domain. What is the best strategy to build a good
classifier for the target domain in this case? One may go for the multi-source adaptation ap-
proaches (Mansour et al., 2009b; Duan et al., 2009b, 2012c). However, it is not necessarily the
best strategy especially when there exists a source domain which is quite close to the target. With-
out running adaptation algorithms, however, can we infer which source domain is the best to be
adapted to the target? To approach this problem, we provide a rank-of-domains (ROD) metric in
Chapter 6. Yet another question is that, given many source domains but no data from any target
domain, can we learn a robust classifier to generalize well to the future test data? This is termed
as domain generalization and has been studied in (Huang & Yates, 2010; Muandet et al., 2013;
Xu et al., 2014). It shares similar spirit as learning robust classifiers (Kołcz & Teo, 2009; Dekel
et al., 2010; Dredze et al., 2008; Globerson & Roweis, 2006; Teo et al., 2007) except that we have
the extra domain labels of the training data.

Domain knowlege or prior is often very useful in application-specific problems, such as face
recognition and NLP. It greatly benefits the corresponding adaptation methods. We give several
examples here: facial landmark localization (Smith & Zhang, 2014), human motion parsing from
videos (Shen et al., 2014), speaker adaptation through HMMs (Leggetter & Woodland, 1995a),
language model adaptation (Bacchiani & Roark, 2003), cross-language text classification via
translation and adaptation (Shi et al., 2010), and so on.

When we talk about domain adaptation in this thsis, we assume that the domains share the
same input and output spaces. In a broader setting, researchers have also examined the case that
the domains have distinct input spaces, called heterogeneous domain adaptation (Argyriou et al.,
2008; Duan et al., 2012b). How to systematically transfer knowledge from various sources to
aid the learning of the target task is regarded as transfer learning. We refer the readers to the
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survey paper (Pan & Yang, 2010) for a better understanding. Domain adaptation techniques can
significantly benefit lifelong learning (Lazaric et al., 2013; Chen & Liu, 2014). They are also
closely related with multi-task learning (Evgeniou & Pontil, 2007). Indeed, we can understand
the semisupervised domain adaptation as a two-task learning problem. Domain adaptation is also
aligned with active learning and few-shot learning in the sense that they all alleviate the need of
many labeled data for the target task. In (Wang et al., 2014) and (Chattopadhyay et al., 2013)
the authors combined the strengths of the adaptation and active learning methods, while one-shot
learning can benefit from transfer learning shown in (Yu & Aloimonos, 2010; Socher et al., 2013).

2.5 Existing works closely related to this thesis

We discuss a few exiting methods that are closely related to ours.
Of particular relevance to our work is the idea of learning new feature representations that

are domain-invariant, thus enabling almost effortlessly transferring classifiers from the source
domain to the target domain (Ben-David et al., 2007; Blitzer et al., 2006, 2007; Daumé III, 2007;
Pan et al., 2009). The feature representation can be derived using auxiliary tasks that predict
“pivot features” shared across domains (Ando & Zhang, 2005; Blitzer et al., 2006), augmenting
the feature space (Daumé III, 2007; Daumé III et al., 2010; Li & Zickler, 2012; Gopalan, 2013),
co-training with multi-view representation (Chen et al., 2011a), or matching probabilistic distri-
butions (Pan et al., 2009). Those approaches are especially appealing to unsupervised domain
adaptation as they do not require labeled target data.

Gopalan et al.’s work (Gopalan et al., 2011) is the closest to our geodesic flow kernel (see
Chapter 4). Both methods explore the idea of using geodesic flows to derive intermediate sub-
spaces that interpolate between the source and target domains. However, a crucial difference
between Gopalan et al.’s work and ours is the number of subspaces used to obtain the overall new
feature representations. They sampled a finite number of subspaces and stacked these subspaces
into a very high-dimensional projection matrix. As such, the dimension of their features needs
to be reduced before one feeds them into a classifier. This extra step, unfortunately, might intro-
duce modeling errors. It is not clear how to choose the sampling rate or the right dimension and
whether the dimension reduction method helps or harms classification.

In stark contrast, our kernel method is both conceptually cleaner and computationally sim-
pler, eliminating the need to tune many parameters. In particular, our kernel is in a closed form
and computing it involves simple matrix algebra like singular value decomposition. Moreover,
the closed-form nature of the kernel (cf. eq. (4.5)) indicates that the dimension of the new feature
space is no more than the dimension of the original feature space—there is no dimensionality
curse though we summing up infinitely many subspaces. We note that Zheng et al. proposed the
same kernel, albeit independently and almost simultaneously (Zheng et al., 2012). Our approach,
however, is able to automatically determine the dimensions of the subspaces and introduces dis-
criminative subspaces to domain adaptation.

While learning domain-invariant feature representations has been extensively studied in the
literature, identifying and using instances that are distributed similarly to the target to bridge the
two domains, as in our landmark-based approach (see Chapter 5), has not been explored before.

The idea of auxiliary tasks was explored previously in (Blitzer et al., 2006) to identify invari-
ant features, where the tasks were to predict “pivot features”. The derived features are the PCA
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directions of those predictive models’ parameters. In our landmark-based approach, however, the
auxiliary tasks are domain adaptation tasks and the invariant features are learned discriminatively.

The procedure of moving labeled data between the source and the target domains in our
landmark-based approach shares some similarity to transductive domain adaptation methods (Berg-
amo & Torresani, 2010; Bruzzone & Marconcini, 2010; Chen et al., 2011a) where classifiers are
iteratively retrained. There are several major properties setting our approach apart from them. We
partition the source domain into two disjoint subsets only once for each auxiliary task. We do not
iteratively re-partition the datasets, whereas in those methods the target and the source domains
are merged iteratively. Besides, our primary goal is to learn useful features from the auxiliary
tasks and we treat each auxiliary task as an unsupervised domain adaptation problem. In contrast,
those methods use the original features and aim to directly adapt the classifiers.

MMD has previously been used to weight data instances from the source domain (Huang
et al., 2006; Pan et al., 2009; Gretton et al., 2009) to correct the mismatch between the two
domains, while we select instances as our landmarks using MMD. Additionally, the new class
balancing constraint in our formulation of eq. (5.4) is crucial, as evidenced in our comparison to
other methods in the experimental studies (cf. Table 9.3).
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Chapter 3

Kernel Methods: A Gentle Tutorial

Surprisingly or not, many statistical machine learning algorithms depend on only inner products
between data points. These include but are not limited to support vector machines (SVMs), Ridge
regression, Fisher’s linear discriminant analysis (Fisher’s LDA), principal component analysis
(PCA), K-means, and spectral clustering. Kernel methods are flexible techniques to expand the
horizon of such methods from at least four perspectives.

• A kernel function implicitly induces a feature mapping, which may not be unique, from the
original data space to a new space. Such mapping can be nonlinear and the dimensionality
of the new space can be virtually infinite. As a result, kernels are often used to define
nonlinear decision boundaries, correlations, cluster boundaries, and other properties of
data in the algorithms of SVMs, LDA, PCA, and so on. Besides, it is often computationally
much more efficient to play with kernels than to work with the induced feature mappings.
We shall see this point more clearly in our GFK approach in Chapter 4.

• A kernel can be a composition of several other kernels. As a result, kernel methods, for
instance multiple kernel learning, provides a clean and versatile framework for combining
heterogeneous data sources, or different representations of the same dataset, to jointly make
decisions or inferences. To this end, we can define one or more kernels from each type of
the data sources and then specify or learn some mechanism to combine these kernels into
a new kernel. One of such techniques is used in our landmark based method in Chapter 5.

• It is convenient to design kernels taking as input symbolic data (sequences, trees, graphs,
etc.). One can thus readily extend the above mentioned machine learning algorithms from
dealing with vectors to working with more other data formats.

• Kernels enable discriminative methods to take advantage of the complementary generative
modeling approaches. Consider a supervised learning problem. Generative models specify
a joint distribution P (x, y) over the observation variables x and target variable y, while
discriminative methods only model the dependency of the target variable on the observation
variables, or P (y|x), under the probabilistic framework. Comparing to the discriminative
methods, the former is able to handle missing data and to capture complex dependencies
among all variables. These two types of approaches are mutually complementary and we
can seamlessly connect them by using kernels.

Next, we provide a gentle tutorial to the kernel methods and focus on the well-known “kernel
trick” (Section 3.1) and the kernel embedding of distributions (Section 3.2), both of which are
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used in the following chapters. For a more comprehensive understanding of the kernels please be
referred to the textbooks (Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004; Herbrich,
2002; Kung, 2014).

3.1 Dual representation and the kernel trick

It is convenient to motivate kernel methods by showing that many machine learning algorithms
depend on only inner products between data points. To this end, we introduce the notion of dual
representation, followed by the statement of the kernel trick. Moreover, we give an illustrating
example, kernel PCA, at the end of this section.

3.1.1 Dual representation

Consider a training set S = {(xm, ym)}Mm=1 and a linear function

f(x) = 〈w,x〉+ b, (3.1)

which shows up in SVM, Logistic regression, Fisher’s LDA, PCA, etc. The model parameter w
can be decomposed into two components,

w =
M∑
m=1

αmxm +w⊥, αm ∈ R,m = 1, 2, · · · ,M (3.2)

where the first lies in the span of the training set S and the latter is the part complementary to the
span. When learning the parameter w using the training set, we usually optimize with respect to
the function values of the observed data,

f(xj) =
M∑
m=1

αm 〈xm,xj〉+
〈
w⊥,xj

〉
+ b =

M∑
m=1

αm 〈xm,xj〉+ b, ∀xj ∈ S (3.3)

where
〈
w⊥,xj

〉
= 0 for all xj ∈ S. In other words, we can actually express the model parameter

w by a linear combination of the observed data without changing its behavior on the sample S,

w =
M∑
m=1

αmxm, αm ∈ R,m = 1, 2, · · · ,M (3.4)

which we call the dual representation of w in the linear function f(x) = 〈w,x〉+ b.
Given an arbitrary input x, we can see from eq. (3.3) that the linear function f(x) depends on

only the inner products between x and the training instances in S under the dual representation. It
is not difficult to validate this for some statistical learning algorithms by the duality technique in
the mathematical optimization theory. Indeed, one can easily find the corresponding derivations
of SVMs and Ridge regression from some textbooks. Instead of ruminating them again, we will
give another illustrating example in Section 3.1.3, kernel PCA (Schölkopf et al., 1997), in which
we shall arrive at the dual representation through plain linear algebra.
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For a more formal treatment of the dual representation described above please see the repre-
senter theorems (Kimeldorf & Wahba, 1970; Schölkopf et al., 2001; Schölkopf & Smola, 2002).

3.1.2 The kernel trick

Denote by X the input space of the data. If we apply some sort of feature transformation φ :
X 7→ H and work in the embedding spaceH, we have

f(φ(x)) =

M∑
m=1

αm 〈φ(xm), φ(x)〉+ b, ∀x ∈ X (3.5)

i.e., the inner products k(x, z) , 〈φ(x), φ(z)〉 in the embedding space H are sufficient for
computing f(φ(x)). There is virtually no need of the explict mapping function φ(·) under the
dual representation as long as we can calculate the inner product k(x, z), which is actually a
kernel function over the original feature space X .

Definition 1. A function k : X × X 7→ R is called a kernel over X .

It is often computationally cheaper and more flexible to play with the kernel function than to
work with the feature mapping φ(·). This approach is called the “kernel trick”, which we leverage
to derive our geodesic flow kernel in Chapter 4. The kernel trick is feasible thanks to Mercer’s
theorem, which guarantees the existence of φ(·) for a rich set of kernels.

Theorem 1. (Mercer’s) A symmetric kernel k(x, z) can be expressed as an inner product

k(x, z) = 〈φ(x), φ(z)〉 (3.6)

for some φ(·) if and only if k(x, z) is symmetric positive definite (SPD), i.e.,∫
c(x)k(x, z)c(z)dxdz ≥ 0, (3.7)

for any square integrable function c(·) ∈ L2(X ), or equivalently, the Gram matrix

K =

 k(x1,x1) k(x1,x2) · · ·
k(x2,x1) k(x2,x2) · · ·

...
. . .

 � 0 (3.8)

is positive semidefinite for any collection {xm ∈ X ,m = 1, 2, · · · }.
In the remaining of this thesis, we always assume that the Mercer’s condition holds when we

talk about kernels. We conclude this subsection by introducing the concept of reproducing kernel
Hilbert space (RKHS).

Theorem 2. (Moore-Aronszajn) For an SPD kernel k(·, ·) over X , there exists a unique Hilbert
spaceH of functions on X satisfying the following reproducing property,

∀h ∈ H, ∀x ∈ X , h(x) = 〈h, k(x, ·)〉 . (3.9)

Further,H is called the reproducing kernel Hilbert space (RKHS) associated to k(·, ·).
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3.1.3 Kernel PCA: an illustrating example

The kernel trick enables us to perform efficient PCA in the embedding space H, which could be
high-dimensional or even have an infinite number of dimensions depending on the (nonlinear)
feature mapping φ(·). We demonstrate the power of the “trick” using kernel PCA. To this end,
we begin working with φ(·), show that PCA only depends on inner products between sample
points, and finally replace the inner products by the kernels. One can use the same procedure to
“kernelize” SVMs, Ridge regression, Fisher’s LDA, canonical correlation analysis, etc. and your
own learning algorithms.

Without loss of generality, assume that our observed data S = {(xm, ym)}Mm=1 in the em-
bedding space have been zero-centered, i.e.,

∑M
m=1 φ(xm) = 0. The covariance matrix is then

computed by

C =
1

M

M∑
m=1

φ(xm)φ(xm)T . (3.10)

The principal components correspond to the eigenvectors of the covariance matrix

λv = Cv =
1

M

M∑
m=1

φ(xm)φ(xm)Tv (3.11)

with the constraint 〈v,v〉 = 1. Of the most interest among all the eigenvectors are those whose
corresponding eigenvalues are non-zero, or more precisely those with λ > 0. We therefore claim
that the dual representations of such eigenvectors hold, i.e.,

v =

M∑
m=1

αmφ(xm), αm ∈ R,m = 1, · · · ,M, (3.12)

where the coefficients αm = 1
λM 〈φ(xm),v〉.

The dual representation of v tells that it lies in the span of the observed data (after the mapping
φ(·)). The eigenvalue equation λv = Cv is thus equivalent to the following,

〈φ(xj), λv〉 = 〈φ(xj), Cv〉 =

〈
φ(xj),

1

M

M∑
m=1

φ(xm)φ(xm)Tv

〉
, ∀xj ∈ S. (3.13)

Substituting eq. (3.12) to (3.13), we have〈
φ(xj), λ

M∑
m=1

αmφ(xm)

〉
=

〈
φ(xj),

1

M

M∑
n=1

φ(xn)φ(xn)T
M∑
m=1

αmφ(xm)

〉
, ∀xj ∈ S.

Denote by Kjm , k(xj ,xm) = 〈φ(xj), φ(xm)〉, the above equation reads

λ
M∑
m=1

αmKjm =
1

M

M∑
n=1

M∑
m=1

αmKjnKnm, ∀j ∈ {1, 2, · · · ,M} (3.14)
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or, in the matrix form, λMKα = K2α, where α = [α1, · · · , αM]T .

Similarly, we have the following.

• The constraint 〈v,v〉 = 1 translates to αTKα = 1.

• The encoding operation 〈v, φ(x)〉 becomesK(x, ·)α, whereK(x, ·) = [k(x,x1), · · · , k(x,xM)].

Unfortunately, the decoding/reconstruction operation of PCA in the embedding space cannot be
done through kernels, because the kernels essentially hide the “real” encoded images by avoiding
the explicit mapping φ(·).

We thus have transformed the PCA problem in the embedding space, related to the original
space by the (nonlinear) feature mapping φ(·), to a new eigenvalue problem defined through the
kernel k(·, ·) over the original feature space,

λMKα = K2α s.t. αKα = 1 (3.15)

⇔ λMα = Kα s.t. αKα = 1. (3.16)

One can specify any kernel k(·, ·) (which must satisfy Mercer’s condition) and then solve the
above eigenvalue problem for the coefficientsα. This set of techniques is named kernel PCA (Schölkopf
et al., 1997). Note that we arrive at kernel PCA by starting from the standard PCA in the em-
bedding space and then replace all inner products by the kernel k(·, ·). This procedure is generic,
being applicable to many algorithms. The kernel trick is thus also called kernel substitution under
some contexts.

3.1.4 Popular kernels

We review several popular kernels in this section.

• Linear kernel: k(x, z) = 〈x, z〉

• Polynomial kernel: k(x, z) = (〈x, z〉+ c)n , c ≥ 0, n ∈ N

• Exponential kernel: k(x, z) = exp(γ 〈x, z〉), γ ≥ 0

• Gaussian kernel: k(x, z) = exp(−γ‖x− z‖2), γ ≥ 0

• Laplacian kernel: k(x, z) = exp(−γ‖x− z‖), γ ≥ 0

• Inverse distance kernel: k(x, z) = 1
‖x−z‖+γ , γ ≥ 0

• Histogram intersection kernel:

k(x, z) =
D∑
d=1

min(xd, zd),

where x and z are D-dimensional histograms {x ∈ RD | xd ≥ 0,
∑D

d=1 xd = 1}.
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• χ2 kernel:

k(x, z) = 1−
D∑
d=1

(xd − zd)2

2(xd + zd)
=

D∑
d=1

2xdzd
(xd + zd)

,

where x and z are D-dimensional histograms {x ∈ RD | xd ≥ 0,
∑D

d=1 xd = 1}.

• Fisher kernel (Jaakkola et al., 1999): The Fisher kernel is popular for exploiting genera-
tive models in discriminative (kernelizable) methods. It measures the pairwise similaries
between data points induced by a generative model P (x;θ). Particularly, the kernel is
defined over the Fisher score vector gθ(z) = ∇ lnP (z;θ),

k(x, z) = gθ(x)TF−1gθ(z)

where F = Ex
[
gθ(x)gθ(x)T

]
is the Fisher information matrix. In practice the Fisher

information matrix is usually computed empirically or simply set as the identity matrix.

• Kernels for matching sets of features: The so called data point x could be a set of fea-
tures. There have been various kernels proposed to match the sets. The pyramid match
kernel (Grauman & Darrell, 2005) and its extension, spatial pyramid matching (Lazebnik
et al., 2006), have been extensively used in image classification. The Bhattacharyya affin-
ity between two Gaussian distributions can be calculated in a closed form when one uses
MLE to estimate the parameters of the Gaussian distributions. The affinity is regarded as
a kernel (Kondor & Jebara, 2003). A more generic framework of explointing the sets of
features via generative models is to define the kernel as

k(x, z) =

∫
P (x|π)P (z|π)P (π)dπ

where π are the hidden states in for instance Hidden Markov models.

• Other kernels: we refer the readers to Part III of the book (Shawe-Taylor & Cristianini,
2004) for some representative kernels for texts, sequences, trees, and other types of struc-
tured data.

It often requires domain knowledge and experimental studies to choose the right kernels for a
specific application. We can also composite new kernels from simple ones. Given valid kernels
k1(·, ·) and k2(·, ·), the following new kernels are still valid, meaning that they satisfy Mercer’s
condition.

1. k(x, z) = ck1(x, z), c ≥ 0

2. k(x, z) = c(x)k1(x, z)c(z), c : X 7→ R

3. k(x, z) = q(k1(x, z)), q(·) : a polynomial with non-negative coefficients

4. k(x, z) = exp(k1(x, z))

5. k(x, z) = k1(x, z) + k2(x, z)

6. k(x, z) = k1(x, z)k2(x, z)
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7. k(x, z) = k3(φ(x), φ(z)), φ : X 7→ RL, k3(·, ·) : a valid kernel over RL

8. k(x, z) = xTAz, A ∈ S+ is symmetric positive semidefinite

9. k(x, z) = ka(xa, za), xa : a subset of the variables of x, ka(·, ·) : a valid kernel over
the space of xa

3.2 Kernel embedding of distributions

We present some major results of the kernel embedding of distributions summarized from (Smola
et al., 2007; Gretton et al., 2006; Sriperumbudur, 2010). The embedding will appear in our
approaches to domain adaptation in Chapter 5 and Chapter 7.

Recall some notations firstly. Denote by X the input space from which we have a sample
X = {xm,m = 1, · · · ,M} drawn i.i.d. according to the distribution P (·) over X , and by H the
RKHS of a kernel k : X × X 7→ R. The embedding of P (·) is then defined as

µ [P ] , Ex∼P [k(x, ·)] (3.17)

µ [X] ,
1

M

M∑
m=1

[k(xm, ·)] (3.18)

where the latter is the empirical estimator of the former. Note that both µ [P ] and µ [X] are
respectively elements of the RKHSH.

We can see that the embedding of the distribution P is nothing but the kernel mean calculated
under P . Its significance is summarized by the theorem stated in (Fukumizu et al., 2004; Gretton
et al., 2006).

Theorem 3. The kernel mean map µ : PX 7→ H of eq. (3.17) is injective if the kernel k(·, ·) is
universal, where PX denotes the collection of probability measures on X .

We can therefore define a metric between two distributions by their respective kernel means
inH, dist(P1, P2) , ‖µ[P1]−µ[P2]‖, which is exactly the maximum mean discrepancy (MMD)
we described in eq. (2.8). Moreover, it is straightforward to approximate this metric by the
observations X1 and X2 respectively of the two distributions, ̂dist(P1, P2) , ‖µ[X1]− µ[X2]‖.
One thus does not need to know or to estimate the distributions in order to approximate the MMD
distance between them. This is a significant result as it is often the case that we do not have
the access to the underlying distributions of the data. However, one may wonder how good the
approximation is by using the empirical kernel mean (eq. (3.18)). A bound between MMD and
its empirical estimation is given in (Gretton et al., 2006) depending on the properties of the kernel
and the sample size.

The choice of the kernel k(·, ·) is essential. As stated in Theorem 3, one has to use universal
kernels to have a valid metric between distributions.

Definition 2. (Universal kernel (Steinwart, 2002a)) A continuous kernel k(·, ·) on a compact
metric space (X ; d), where d stands for a metric on the compact input spaceX , is called universal
if the space of all functions induced by k(·, ·) is dense in C(X ), i.e., for every function f ∈ C(X )
and every ε > 0 there exists a function g induced by k such that ‖f − g‖∞ ≤ ε.
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The Gaussian RBF kernel, Laplacian kernel, and the exponential kernel are universal. Stein-
wart provides several conditions to check whether or not a kernel is universal (Steinwart, 2002a).
The notion of being universal is further extended to being characteristic in (Fukumizu et al., 2007)
in the context of distribution embedding. Please be referred to (Sriperumbudur et al., 2010) for a
great comparison between universal kernels and characteristic kernels.
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Part II

Unsupervised Domain Adaptation with Kernel Methods
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Chapter 4

Geodesic Flow Kernel

In this chapter, we introduce the geodesic flow kernel (GFK) for unsupervised domain adapta-
tion. The kernel function measures similarity between data points in a domain-invariant feature
space, thus enabling the adaptation of classifiers trained on the source domain readily to the tar-
get domain. We describe the main idea first, followed by the details on deriving the kernel. Our
approach is particularly appealing as it is free of (hyper)parameter-tuning which often requires
computationally intensive cross-validation; we describe how to choose automatically the only
hyper-parameter in section 4.4.

4.1 Main idea

Our approach follows broadly the theme of identifying the shared representation between differ-
ent domains (Ben-David et al., 2007). Intuitively, we seek a feature space such that when data
points are projected into this space, the source domain is similar to the target domain.

How to define and quantify shared characteristics entails careful examination of our intuition
on what type of representation facilitates adaptation. For example, in the part-of-speech (POS)
task of tagging words into different syntactic categories (Blitzer et al., 2006), the idea is to extract
shared patterns from auxiliary classification tasks that predict “pivot features”, frequent words
which are themselves discriminative in both domains. While sensible for language processing
tasks, typical histogram based features of low-level visual or speech descriptors do not have the
benefits of pivot “ words” — in general, no single feature dimension from a particular histogram
bin is discriminative enough to differentiate categories.

On the other hand, many perceptual data (e.g., visual and speech data) are assumed to lie in
low-dimensional subspaces. Given data from two domains, how can we exploit the subspaces in
these datasets, which can be telltale cues in revealing the underlying difference and commonness
between the domains?

The main idea behind our approach is to implicitly construct an infinite-dimensional feature
spaceH∞. This feature space assembles and aggregates information on the source domain S, on
the target domain T , and on “phantom” domains interpolating between those two. In particular,
the phantom domains represent incremental changes in the geometric and statistical properties
between the two domains. While each of the domains is represented with a subspace, the inner
products in H∞ are defined to integrate over an infinite number of such subspaces. Intuitively,
this integration averages out domain-specific idiosyncrasies and computes similarity measures
that are insensitive to domain mismatch. Equivalently, the inner products give rise to a kernel
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Figure 4.1: Main idea of our geodesic flow kernel-based approach for domain adaptation (best
viewed in color). We embed source and target datasets in a Grassmann manifold. We then
construct a geodesic flow (path) between the two points and integrate an infinite number of sub-
spaces along the flow Φ(t). Concretely, raw features are projected into these subspaces to form
an infinite-dimensional feature vector z∞ ∈ H∞. Inner products between these feature vectors
define a kernel function that can be computed over the original feature space in closed-form.
The kernel encapsulates incremental changes between subspaces that underly the difference and
commonness between the two domains. The learning algorithms thus use this kernel to derive
low-dimensional representations that are invariant to the domains.

function that defines the kernel mapping from the original feature space to a domain-invariant
feature space.

In the following, we start by reviewing some basic notions of Grassmann manifolds; the
subspaces of the data from the source and target domains are represented as two points on one
such manifold. Furthermore, the phantom domains correspond to the points on the geodesic path
connecting those two points. Fig. 4.1 sketches the main idea.

4.2 Modeling domains on Grassmann manifold

In statistical modeling, we often assume data can be embedded in a low-dimensional linear sub-
space. For example, principal component analysis (PCA) identifies the subspace where the vari-
ances of the embedded data are maximized. Most of the time, it is both sufficient and convenient
to refer to a subspace with its basis P ∈ RD×d, where D is the dimensionality of the data and
d is the dimensionality of the subspace. For PCA, the basis is then the top d eigenvectors of the
data’s covariance matrix. The collection of all d-dimensional subspaces form the Grassmannian
G(d,D), a smooth Riemannian manifold on which we can define geometric, differential, and
probabilistic structures.

As an intuitive example of how manifolds can help us to attack the problem of domain adap-
tation, imagine that we compute the subspaces of the datasets for the S and T domains and map
them to two points on a Grassmannian. Intuitively, if these two points are close by, then the two
domains could be similar to each other; for example, their features may be similarly distributed.
Thus, a S-trained classifier is likely to work well on T .

However, what if these two domains are far apart on the manifold? For example, suppose
two datasets of car images with large differences in poses are placed far apart on the manifold.
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We aim to use intermediate subspaces to learn domain-invariant features for adaptation1. Specif-
ically, the intermediate subspaces would capture statistics of car images under poses interpolated
between the source and the target domain. Being informed of all these different subspaces from
the same category, the learning algorithms might be able to extract features that are less sensitive
to variations in pose. To this end, we will use the geodesic flow path to connect the two domains,
where every point on this flow path is an intermediate subspace.

4.3 Defining the geodesic flow kernel (GFK)

Our approach consists of the following steps: i) determine the optimal dimensionality of the
subspaces to embed domains; ii) construct the geodesic flow path; iii) compute the geodesic flow
kernel; iv) use the kernel to construct a classifier with labeled data. We defer describing step i) to
the next section and focus on steps ii) and iii).

For step ii), we state only the main computational steps. The detailed derivation can be found
in (Gopalan et al., 2011) and references therein. We also omit step iv) for brevity, as it is the same
as constructing any other kernel-based classifier.

4.3.1 Construct geodesic flow

Let PS ,PT ∈ RD×d denote the two sets of basis of the subspaces for the source and target
domains. Let RS ∈ RD×(D−d) denote the orthogonal complement to PS , namely RT

SPS =
0. Using the canonical Euclidean metric for the Riemannian manifold, the geodesic flow is
parameterized as Φ : t ∈ [0, 1] → Φ(t) ∈ G(d,D) under the constraints that Φ(0) be the
subspace of the source domain and Φ(1) be the subspace of the target domain. For other t, we
have

Φ(t) = PSU1Γ(t)−RSU2Σ(t), (4.1)

where U1 ∈ Rd×d and U2 ∈ R(D−d)×d are orthonormal matrices. They are given by the follow-
ing pair of SVDs,

P T
SPT = U1ΓV

T, RT
SPT = −U2ΣV

T . (4.2)

Γ and Σ are d × d diagonal matrices. The diagonal elements are cos θi and sin θi for i =
1, 2, . . . , d. In particular, θi are called the principal angles between PS and PT :

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θd ≤ π/2. (4.3)

They measure the degree that subspaces “overlap”. We provide the details of how to efficiently
compute them in Chapter 6. Moreover, Γ(t) and Σ(t) are diagonal matrices whose elements are
cos(tθi) and sin(tθi) respectively.

4.3.2 Compute the geodesic flow kernel (GFK)

The geodesic flow parameterizes how the source domain smoothly changes to the target domain.
Consider the subspace Φ(t) for a t ∈ (0, 1) and compute Φ(t)Tx, ie, the projection of a feature

1A similar idea was pursued in (Gopalan et al., 2011). We contrast it to our work in Chapter 9.
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vector x into this subspace. If x is from the source domain and t is close to 1, then the projection
will appear as if it is more likely coming from the target domain, and conversely for t close to 0.
Thus, using the projection to build a classifier would result in a model using a set of features that
are characteristic of both domains. Hence, this classifier would likely perform well on the target
domain.

Which (or which set of) t should we use then? Our answer is surprising at the first glance:
all of them! Intuitively, by expanding the original features with projections into all subspaces, we
force a measurement of similarity (as we will be using inner products to construct classifiers) that
is robust to any variation that leans either toward the source or towards the target or in between. In
other words, the net effect is a representation that is insensitive to idiosyncrasies in either domain.
We provide more detailed analysis and empirical evidence in section 4.5.

Computationally, however, we cannot use this representation explicitly. Nevertheless, we next
show that there is no need to actually compute, store, and manipulate infinitely many projections.

For two original D-dimensional feature vectors xi and xj , we compute their projections into
Φ(t) for a continuous t from 0 to 1 and concatenate all the projections into infinite-dimensional
feature vectors z∞i and z∞j . The inner product between them defines our geodesic-flow kernel,

〈z∞i , z∞j 〉 =

∫ 1

0
(Φ(t)Txi)

T(Φ(t)Txj) dt = xT
iGxj , (4.4)

where G ∈ RD×D is a positive semidefinite matrix. This is precisely the “kernel trick”, where a
kernel function induces inner products between infinite-dimensional features.

The matrixG can be computed in a closed-form from previously defined matrices:

G = [PSU1 RSU2]

[
Λ1 Λ2

Λ2 Λ3

][
UT

1 P
T
S

UT
2R

T
S

]
(4.5)

where Λ1 to Λ3 are diagonal matrices, whose diagonal elements are

λ1i = 1 +
sin(2θi)

2θi
, λ2i =

cos(2θi)− 1

2θi
, λ3i = 1− sin(2θi)

2θi
. (4.6)

Detailed derivations are given in Appendix A.

4.3.3 Extract the domain-invariant feature space

The kernel G can be plugged into any kernelized classifiers, such as nonlinear SVMs. Addi-
tionally, we can also extract from it an equivalent finite-dimensional domain-invariant feature
space. Let L be G’s square root: LTL = G. The domain-invariant feature space is given by the
following feature mapping

x→ z = Lx, (4.7)

such that zT
i zj = xT

iGxj . This explicit feature representation is convenient for constructing
other types of classifiers that do not depend on inner products (such as logistic regression).

The closed-form expression of the geodesic flow kernel is convenient to use and does not
depend on user-selected parameters such as the bandwidth in the Gaussian RBF kernels. In
practice, we need to choose the dimensionality d of the subspaces for representing the domains.
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We will show next how to automatically infer this hyperparameter from the data, thus making the
proposed method fully automatic and free of tuning any hyperparameters.

4.4 Automatic inference of subspace dimension d

The intuition behind our approach of automatically inferring the dimensionality d of the sub-
spaces is to align as much as possible the subspaces of the source and target domains. To this
end, we develop a subspace disagreement metric (SDM).

To compute SDM, we first compute the PCA subspaces of the two datasets, PCAS and
PCAT . We also combine the datasets into one dataset and compute its subspace PCAS+T .
Intuitively, if the two datasets are similar, then all three subspaces should not be too far away
from each other on the Grassmannian. The SDM captures this notion and is defined in terms of
the principal angles (cf. eq. (4.3)),

D(d) = 0.5 [sinαd + sinβd] , (4.8)

where αd denotes the d-th principal angle between the PCAS and PCAS+T and βd between
PCAT and PCAS+T . The quantity sinαd or sinβd is called the minimum correlation distance
(Hamm & Lee, 2008).

Note thatD(d) is at most 1. A small value indicates that both αd and βd are small, thus PCAS
and PCAT are aligned (at the d-th dimension). At its maximum value of 1, the two subspaces
have orthogonal directions (i.e., αd = βd = π/2). In this case, domain adaptation will become
difficult as variances captured in one subspace would not be able to transfer to the other subspace.

To identify the optimal d, we adopt a greedy strategy:

d∗ = min{d|D(d) = 1}. (4.9)

Intuitively, the optimal d∗ should be as high as possible (to preserve variances in the source do-
main for the purpose of building good classifiers) but should not be so high that the two subspaces
start to have orthogonal directions.

4.5 Reducing domain discrepancy with the GFK

Building on the general intuitions described above, we now more formally justify the rationale
behind the GFK. How exactly does GFK reduce the discrepancy across domains? The definition
of the kernel in eq. (4.4) provides several clues. In particular, we will show in the following that
the proposed kernel construction leads to measuring distances between data points in a way that
is insensitive to domains.

To start with, consider that we would like to use a nearest neighbor classifier on both the
source and the target domains in an ideal domain-invariant feature subspace F , parameterized
by its basis F . What properties do we desire for the subspace F? In what follows, we describe
two such properties which are strongly correlated with empirical evidence in supporting using the
GFK for deriving domain-invariant features.
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Table 4.1: Distortion ratios (in %) to distances computed within the source and target domains,
using 4 subspaces

Domain pairs PCAS PCAT PCAS+T GFK

AMAZON- CALTECH 8.78 7.71 5.48 6.18
AMAZON- DSLR 19.9 17.3 15.9 13.2

AMAZON- WEBCAM 15.5 14.0 11.8 10.8
CALTECH- DSLR 14.1 16.3 12.1 11.1

CALTECH- WEBCAM 15.5 14.8 11.0 10.9
DSLR- WEBCAM 15.7 13.7 10.4 10.6

Average 14.9 14.0 11.1 10.5

At the foremost, we would like F to preserve distances between data points measured within
the source domain’s subspace. Namely,

‖F Txi − F Txj‖22 − ‖P T
Sxi − P T

Sxj‖22 ≈ 0, (4.10)

for points xi,xj ∈ S. This is analogous to the central ideas of many manifold learning algorithms
to preserve distances. Similarly, for a pair of data points xm and xn from the target domain T ,
we would like

‖F Txm − F Txn‖22 − ‖P T
T xm − P T

T xn‖22 ≈ 0. (4.11)

Along the geodesic flow eq. (4.1), if we select the subspace F = Φ(t) with t� 1, the distance-
preserving condition for the source domain is easy to be satisfied as F would be close to PS .
However, such F would distort the distance-preserving condition for the target domain signifi-
cantly as F would be very different from PT . Conversely, for t ≈ 1, the selected subspace F on
the flow will preserve distances in the opposite way.

The “right” choice is then to balance the averaged distortion ratios (i.e., distortions divided by
distances) for each domain and select an intermediate point on the flow. While feasible in theory
(for instance, by minimizing a properly constructed objective function over t), an alternative
approach is to use all subspaces, as in the derivation of our GFK. The intuition is “to average
out”: for any t, if the subspace Φ(t) preserves the distances for the source domain better than the
target domain, then for (1 − t), the converse is true. In other words, if uniformly sampling the
flow, the expected distortion is the same for both domains — we are not favoring any particular
one of them. More precisely, this subspace will give rise to the following distance function

‖F Tx− F Tx′‖22 = (x− x′)T
∫
t
Φ(t)TΦ(t)dt (x− x′), (4.12)

which is precisely defined in terms of our GFK.
To help illustrate this point, Table 4.1 reports the averaged distortion ratios computed within

the source and target domains, using four different subspaces: the PCA subspace of the source
(PCAS), the PCA subspace of the target (PCAT ), the PCA subspace of merging the source and the
target (PCAS+T ), and the subspace induced by our GFK (GFK). We report results on six different
pairs of source and target domains, all used in our experimental studies for domain adaptation in
Chapter 9. The subspace by our GFK attains the smallest distortion.
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Figure 4.2: Histograms of pairwise distances within each domain where the distances are calcu-
lated within four different subspaces. GFK induces a subspace such that the difference between
the source’s histogram and the target’s is the smallest.

The second property we desire for F is closely related to our goal of using the source labeled
data to classify the target unlabeled data. Intuitively, if we use F to measure pairwise distances
within each domain, then those two sets of distances should be similarly distributed. Otherwise,
the data instances in the target domain will not be classified as effectively as the instances in the
source domain. This is especially true if data follows the assumption of discriminative clustering
— all instances from the same class form a tight cluster and different clusters tend to be apart
from each other (Shi & Sha, 2012).

Fig. 4.2 displays the histograms of those pairwise distances computed using several sub-
spaces. The source domain is the AMAZON dataset and the target domain is the WEBCAM dataset
(for a detailed description of these datasets, please refer to section 8.5). We see that the subspace
corresponding to GFK brings the source and the target domains closest. Table 4.2 quantitatively
confirms the outcome; we report the symmetric KL divergence between those histograms for the
same six pairs of source and target domains as in Table 4.1. Clearly, GFK is able to attain the
smallest divergences.

Combining the results in Table 4.1 and 4.2, we find that the GFK leads to a subspace that
best satisfies the two desirable properties simultaneously: minimal distortions to distances and
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Table 4.2: Symmetric KL divergences between the histograms of pairwise distances across two
domains

Domain pairs PCAS PCAT PCAS+T GFK

AMAZON- CALTECH 0.413 0.445 0.014 0.012
AMAZON- DSLR 2.145 7.411 0.734 0.33

AMAZON- WEBCAM 1.048 2.301 0.174 0.027
CALTECH- DSLR 1.026 2.488 0.587 0.138

CALTECH- WEBCAM 1.747 2.188 0.347 0.178
DSLR- WEBCAM 2.884 0.808 0.009 0.089

Average 1.544 2.607 0.311 0.129

matching how distances are distributed. This empirical evidence strongly supports the GFK as a
method to extract domain-invariant features. This support is echoed by the superior performance
of GFK in benchmark problems, reported in Chapter 9.

4.6 Summary

To recap our GFK-based approach, we i) determine the optimal dimensionality of the subspaces
(eq. (4.9)); ii) compute the geodesic flow kernel G using the subspaces eq. (4.5); iii) use the
kernel to construct a classifier with the labeled data, either using a kernelized classifier which
requires only the inner products defined by the kernel matrix G or using the invariant features in
eq. (4.7) in other classifiers.
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Chapter 5

Landmarks: A New Intrinsic Structure for Domain Adaptation

In the GFK approach described so far—as well as more generally in existing domain adaptation
work that models the mismatch and similarity between the source and target domains—all data
instances in the source domain are treated “holistically”, with the assumption that all of them
are equally adaptable to the target domain. In contrast, here our insight is that instead modeling
adaptation at a finer granularity will be beneficial. In particular, we hypothesize that not all
instances from the source domain are equally amenable to adaptation.

As a motivating example, suppose the source domain contains furniture in a home environ-
ment and the target domain consists of images of office-style furniture. Conceivably, certain
images from the source — such as those taken in home offices — could also be regarded as sam-
ples from the target domain. Such images thus might have properties that are shared by both
domains. These properties in turn can guide learning algorithms to search for invariant features.

Our approach automatically discovers and identifies such images, which we call “landmarks”.
We use them to bridge the source and the target domains to generate multiple candidates of invari-
ant feature spaces. Additionally, we exploit the labels of the landmarks to adapt discriminatively
the invariant features to be optimal for the target domain.

In contrast to the GFK approach discussed thus far, our landmark-based approach discov-
ers feature spaces that are discriminatively optimized. On the other hand, we also show that
the landmark-based approach integrates well with GFK. In particular, our automatic landmark
identification algorithm (section 5.2) benefits significantly from using the GFK as a similarity
measure.

We start by giving an overview of the landmark approach, followed by details on how to
identify landmarks. We then show how to exploit those landmarks for discriminative learning on
the target domain.

5.1 Main idea

As the first step, our landmark approach plucks out and exploits the most desirable instances —
landmarks — to facilitate adaptation. Identifying those instances requires comparing all possible
subsets from the source domain to the target. We will show how this can be addressed with
tractable optimization.

Leveraging the existence of landmarks and their properties, we create a cohort of auxiliary
tasks where landmarks explicitly bridge the source and target domains. Specifically, in those
auxiliary tasks, the original target domain is augmented with landmarks, blurring the distinction

38



Φ1(x)

Φ2(x)
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Φ(x)=

Figure 5.1: Sketch of the main idea of our landmark approach (best viewed in color). (a) The
original domain adaptation (DA) problem where instances in red are from the target and in blue
from the source. (b) Landmarks, shown inside the green circles, are data instances from the
source that can be regarded as samples from the target (section 5.2). (c) Multiple auxiliary tasks
are created by augmenting the original target with landmarks, which switches their color (domain
association) from blue to red (section 5.3). Each task gives rise to a new feature representation.
These representations are combined discriminatively to form domain-invariant features for the
original DA problem (section 5.4).

across domains. Thus, those tasks are easier to solve than the original problem. We show this is
indeed true both theoretically and empirically.

The auxiliary tasks offer multiple views of the original problem. In particular, each task dif-
fers by how its landmarks are selected, which in turn is determined by how the similarity among
instances is measured. In this work, we measure similarities at multiple scales (of distances).
Thus, each view provides a different perspective on the adaptation problem by being robust to
idiosyncrasies in the domains at different granularities.

The solutions of the auxiliary tasks give rise to multiple domain-invariant feature spaces that
can be characterized by linear positive semidefinite kernel functions. We parameterize invariant
features for the original adaptation problem with those auxiliary kernels. Intuitively, not all of the
kernels are equally useful; to discern which are, we cast the corresponding learning problem in
terms of multiple kernel learning. We learn the kernel discriminatively to minimize classification
errors on the landmark data instances, which serve as a proxy to discriminative loss on the target
domain. Fig. 5.1 schematically illustrates the overall approach.

We describe our three-step landmark-based approach below: i) identifying and selecting the
landmark instances; ii) constructing multiple auxiliary tasks using landmarks and inferring the
corresponding domain-invariant feature spaces, one for each auxiliary task; iii) discriminatively
learning the final domain-invariant feature space that is optimized for the target domain.
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5.2 Discovering landmarks

Landmarks are data points from the source domain; however, given how they are distributed,
they look like they could be samples from the target domain too (cf. Fig. 5.1 for a schema-
tic illustration, and Fig. 9.3 in Chapter 8.5 for exemplar images of visual objects identified as
landmarks in vision datasets). The intuition behind our approach is to use these landmarks to
bridge the source and the target domains.

How can we identify those landmarks? At first glance, it seems that we need to compare all
possible subsets of training instances in the source domain to the target. We will show in the
following this seemingly intractable problem can be relaxed and solved with tractable convex
optimization.

Let S = {(xm, ym)}Mm=1 denote M data points and their labels from the source domain.
Likewise, we use T = {xn}Nn=1 for the target domain.

5.2.1 Landmark selection

To identify landmarks, we use M indicator variables α = {αm ∈ {0, 1}}, one for each data point
in the source domain. If αm = 1, then xm is regarded as a landmark. Our goal is to choose
among all possible configurations of α = {αm} such that the distribution of the selected data
instances is maximally similar to that of the target domain.

To determine whether the two distributions are similar, we use a non-parametric two-sample
test called maximum mean discrepancy (MMD) (Gretton et al., 2006) (other approaches are also
possible, including building density estimators when the dimensionality is not high). Specifically,
we use a nonlinear feature mapping function φ(·) to map x to a Reproducing Kernel Hilbert Space
(RKHS) and compare the difference in sample means. When the mapping function is a unit-ball
in a universal RKHS, the difference can be conveniently calculated in the following1,

MMD(α) =

∥∥∥∥∥ 1∑
m αm

∑
m

αmφ(xm)− 1

N

∑
n

φ(xn)

∥∥∥∥∥
2

H

, (5.1)

where
∑
αm is the number of selected landmarks, and the first term inside the norm is the mean

of the selected landmarks under the mapping.
Our goal is to choose α such that the difference is minimized. Furthermore, we impose

the constraint that labels be balanced in the selected landmarks. Concretely, we arrive at the
following optimization problem

min
α

MMD(α) (5.2)

s.t.
1∑
m αm

∑
m

αmymc =
1

M

∑
m

ymc, (5.3)

1The unit-ball condition allows the difference be represented as a metric in the form of eq. (5.1) and the universality
ensures that the means are injective such that the difference in the means is zero if and only if the two distributions are
the same. For more detailed theoretical analysis, please refer to (Gretton et al., 2006).
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where ymc is an indicator variable for ym = c. The right-hand-side of the constraint is simply the
prior probability of the class c, estimated from the source.

We stress that the above criterion is defined on landmarks, which are a subset of the source
domain, as the sample mean is computed only on the selected instances (cf. the denominator∑

m αm in eq. (5.2) ). This is very different from other approaches that have used similar non-
parametric techniques for comparing distributions (Pan et al., 2009; Gretton et al., 2009). There
they make stronger assumptions that all data points in the source domain need to be collectively
distributed similarly to the target domain. Furthermore, they do not impose the balance constraint
of eq. (5.3). Our results will show that these differences are crucial to the success of our approach.

Eq. (5.2) is intractable due to the binary constraints on αm. We relax and solve it efficiently
with convex optimization. We define new variables βm as αm (

∑
m αm)−1. We relax them to

live on the simplex ∆ = {β : βm ≥ 0,
∑

m βm = 1}. Substituting {βm} into eq. (5.2) and its
constraints, we arrive at the following quadratic programming problem:

minβ∈∆ βTAβ − 2/NβTB1
s.t.

∑
m βmymc = 1/M

∑
m ymc, ∀ c,

(5.4)

whereA ∈ RM×M denotes the kernel matrix computed over the source domain, andB ∈ RM×N

denotes the kernel matrix computed between the source domain points and target domain points.
The optimization is convex, as the kernel matrixA is positive semidefinite.

We recover the binary solution forαm by finding the support of βm, ie, αm = THRESHOLD(βm).
In practice, we often obtain sparse solutions, supporting our modeling intuition that only a subset
of instances in the source domain is needed to match the target domain.

5.2.2 Multi-scale analysis

The selection of landmarks depends on the kernel mapping φ(x) and its parameter(s). To satisfy
the requirement of being a unit-ball in a universal RKHS, we use Gaussian RBF kernels, defined
as follows:

K(xi,xj) = exp{−(xi − xj)TM(xi − xj)/σ2}, (5.5)

where the metricM is positive semidefinite. We experimented with several choices — details in
Chapter 9.

The bandwidth σ is a scaling factor for measuring distances and similarities between data
points. Since we regard landmarks as likely samples from the target domain, σ determines how
much the source and the target are similar to each other at different granularities. A small σ will
attenuate distances rapidly and regard even close points as being dissimilar. Thus, it is likely to
select a large number of points as landmarks in order to match distributions. A large σ will have
the opposite effect. Fig. 9.3 illustrates the effect of σ.

Instead of choosing one σ in the hope that one scale fits all, we devise a multiscale approach.
We use a set {σq ∈ [σmin, σmax]}Qq=1. For each σq, we compute the kernel according to eq. (5.5)
and solve eq. (5.4) to obtain the corresponding landmarks Lq = {(xm, ym) : αm = 1}. Using
multiple scales adds the flexibility of modeling data where similarities cannot be measured in one
homogeneous scale. For example, the category of GRIZZLY BEAR is conceivably much closer to
GREY BEAR than to POLAR BEAR, and so to capture similarities among both the pairs as well as
among all three, it is necessary to model them at two scales.
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Each set of landmarks (one set per scale) gives rise to a different perspective on the adaptation
problem by suggesting which instances to explore to connect the source and the target. We
achieve this connection by creating auxiliary tasks, as we describe next.

5.3 Constructing auxiliary tasks

Imagine we create a new source domain Sq = S \ Lq and a new target domain T q = T
⋃
Lq,

where the Lq is removed from and added to the source and target domains, respectively. We do
not use Lq’s labels at this stage yet.

Our auxiliary tasks are defined as Q domain adaptation problems, Sq → T q. The auxiliary
tasks differ from the original problem S → T in an important aspect: the new tasks should be
“easier”, as the existence of landmark points ought to aid the adaptation. This is illustrated by
the following theorem, stating that the discrepancy between the new domains is smaller than the
original.

Let PS(X) and PT (X) denote the distributions of the original source and the target domains,
respectively. Suppose PS(X) = αPN (X) + (1 − α)PL(X) with α ∈ [0, 1) is a mixture model
where PL(X) is the component corresponding to the landmark data points and PN (X) corre-
sponds to the distribution of the non-landmark instances. For the auxiliary task, assume the new
target distribution is modeled as a mixture distribution QT (X) = βPT (X) + (1 − β)PL(X)
where β ∈ [0, 1). Furthermore, assume the source distribution remains essentially unchanged,
which is easily satisfied as long as the number of instances in the source domain is significantly
greater than the number of landmark instances and the landmarks are selected i.i.d. from PL(X)2.

In what follows, we omit the arguments and their parentheses (X) to simplify the notation.

Theorem 4. The following inequality holds,

KL(PS‖QT ) ≤ KL(PS‖PT )

where KL(·‖·) stands for the Kullback-Leibler divergence, if the following condition is satisfied

αKL(PN‖PT ) + (1− α)KL(PL‖PT )

≥ 9

8
max {KL(PL‖PN ), KL(PN‖PL)} (5.6)

In words, the new target distribution is closer to the source distribution, on the condition that the
inter-domain difference (i.e. the left-hand-side) is greater than the intra-domain discrepancy or
inhomogeneity (i.e., the right-hand-side).

The proof is in the Appendix B. Note that the condition in eq. (5.6) is mild: we would expect
the source domain is relatively homogeneous and is distinct from the target domain. Also note
that the theorem subsumes a similar result in our previous work (Gong et al., 2013b) where we
have assumed that the landmarks are i.i.d sampled from the source domain, which is a more
stringent assumption that corresponds to the current theorem when PL(X) = PN (X).

2Note that we do not require the landmarks to be i.i.d samples from PS(X) — they only need to be representative
samples of PL(X).
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With the reduced discrepancy betweenPS(X) andQT (X), we can apply the analysis in (Man-
sour et al., 2009a, Lemma 1) to show that classifiers applied to QT (X) attain a smaller general-
ization error bound than those applied to PT (X). Intuitively, the increased similarity between the
new domains is also closely related to the increased difficulty of distinguishing which domain a
data point is sampled from. More formally, if we were to build a binary classifier to classify a
data point into one of the two categories SOURCE versus TARGET, we would expect the accuracy
to drop when we compare the original to the auxiliary tasks. The accuracy — also named as
A-distance — is closely related to how effective domain adaption can be (Blitzer et al., 2007). A
high accuracy is indicative of a highly contrasting pair of domains, and thus is possibly due to
many domain-specific features capturing each domain’s individual characteristics.

These insights motivate our design of auxiliary tasks: they conceivably have low accuracy for
binary classification as the landmarks blend the two domains, discouraging the use of domain-
specific features. We describe next how to extract domain-invariant ones using the solutions of
those easy problems as a basis.

5.3.1 Learning basis from auxiliary tasks

Having shown that the auxiliary tasks represent easier domain adaptation problems, we now use
them for adaptation. Specifically, for every pair of auxiliary domains, we use the geodesic flow
kernel to compute domain-invariant features. The GFK is particularly adept at measuring domain-
invariant distances among data points, as exemplified by its superior performance in nearest-
neighbor classifiers (cf. Section 9.2). Thus, it is especially suitable for the final stage of our
approach when we compose complex domain-invariant features (cf. Section 5.4).

The domain-invariant feature space is extracted as the mapping Φq(x) = Lqx, where Gq =
LT
qLq is the GFK for the q-th auxiliary task (cf. eq. (4.7)). In the following, we describe how

to integrate the spaces — one for each auxiliary task — discriminatively so that the final feature
space is optimal for the target.

5.4 Discriminative learning

In this final step, we reveal the second use of landmarks beyond constructing auxiliary tasks.
We will use their labels to learn discriminative domain-invariant features for the target domain.
Concretely, we compose the features for the original adaptation problem with the auxiliary tasks’
features as a basis.

We scale and concatenate those features {√wqΦq(x)}Qq=1 into a super-feature vector f .
Learning {wq} is cast as learning a convex combination of all kernelsGq (Lanckriet et al., 2004),

F =
∑
q

wqGq, s.t. wq ≥ 0 and
∑
q

wq = 1. (5.7)

We use the kernel F in training a SVM classifier and the labels of the landmarks {Lq}, i.e.,
DTRAIN =

∑
q Lq to optimize {wq} discriminatively. We use DDEV = S \ DTRAIN be a validation

dataset for model selection. Since DTRAIN consists of landmarks that are distributed similarly to
the target, we expect the classification error on DTRAIN to be a good proxy to that of the target.

43



5.5 Summary

To recap our landmark-based approach: i) at each granularity σq, and with the aid of our GFK,
we automatically select landmarks — individual instances that are distributed most similarly to
the target; ii) we then construct auxiliary tasks and use their solutions as a basis for composing
domain-invariant features; iii) we learn features discriminatively, using classification loss on the
landmarks as a proxy to the discriminative loss on the target.
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Chapter 6

Rank of Domains

Imagine we need build a classifier for a target domain for object recognition. We have several
datasets, Caltech-101, PASCAL VOC, and ImageNet to choose from as the source domain1.
Without actually running our domain adaptation algorithms and building classifiers, is it possible
to determine which dataset(s) would give us the best performance on the target domain? This
question is of practical importance: it is much more cost-effective to be able to select one (or a
limited few) that is likely to adapt well to the target domain, instead of trying each one of them.

To answer this question, we introduce a Rank-of-Domains (ROD) metric that integrates two
sets of information: geometrically, the alignment between subspaces, and statistically, KL diver-
gences between data distributions once they are projected into the subspaces. The ROD metric is
defined upon the concepts of principal angles and principal vectors between two subspaces.

6.1 Principal angles and principal vectors

Let PS ,PT ∈ RD×d be the bases of the source subspace and the target subspace, respectively.
The principal angles {θi} between the two subspaces are recursively defined as,

cos(θi) = max
si∈span(PS)

max
ti∈span(PT )

〈si, ti〉
‖si‖‖ti‖

, , i = 1, 2, · · · , d (6.1)

such that
sk ∈ span(PS), si⊥sk,
tk ∈ span(PT ), ti⊥tk,

k = 1, 2, · · · i− 1.

In the above, si and ti are called the principal vectors associated with θi, and span(P ) denotes
the subspace spanned by the column vectors of P . Essentially, the principal vectors {si} and
{ti} are the new bases for the two subspaces, respectively, such that after the change of the bases,
the two subspaces maximally overlap along the “ordered” bases. The degrees of overlapping are
measured by the principal angles — the series of smallest angles between the bases.

Now we are ready to define the ROD metric.

1In addition to picking out a single best source domain, of course multi-source domain adaptation is another
choice. Nonetheless, the computation cost is often higher. It also bears a higher risk of negative adaptation if some of
the source domains are dramatically different from the target domain. In other words, multi-source domain adaptation
does not necessarily outperform adapting from a single good source domain.
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6.2 Rank of Domains (ROD)

Given a pair of domains, ROD involves three steps: i) determine the optimal dimensionality d∗ for
the subspaces (as in section 4.4); ii) at each dimension i ≤ d∗, approximate the data distributions
of the two domains with two one-dimensional Gaussians and then compute the symmetrized KL
divergences between them; iii) compute the KL-divergence weighted average of principal angles,

R(S, T ) =
1

d∗

d∗∑
i

θi [KL(Si‖Ti) +KL(Ti‖Si)] . (6.2)

Si and Ti are the two above-mentioned Gaussian distributions; they are estimated from data pro-
jected onto the principal vectors (associated with the i-th principal angle). Note we use only the
first d∗ directions. Beyond that, the subspaces of the two domains start to have orthogonal direc-
tions, on which the two domains would have very different geometric and statistical properties.
As such, the source classifier is unlikely to be adapted successfully to the target.

A pair of domains with smaller values of R(S, T ) are more likely to adapt well: the two
domains are both geometrically well-aligned (small principal angles) and similarly distributed
(small KL divergences). Empirically, when we use the metric to rank various datasets as source
domains, we find the ranking correlates well with their relative performance on the target domain.

6.3 Computing ROD

Let XS ∈ RM×D and XT ∈ RN×D denote the observed input samples from the source and the
target domains. We provide the details on how to compute the ROD metric between them. The
corresponding subspacesPS ,PT ∈ RD×d∗ are obtained using standard PCA, where the subspace
dimension d∗ is automatically determined by the subspace disagreement measure in Section 4.4.

The next step is to calculate the principal angels and vectors. Given the singular value de-
composition, P T

SPT = U1ΓV
T, the principal angles and vectors can be solved in closed from,

θi = arccos γi, si = (PSU1)·,i, ti = (PT V )·,i, (6.3)

where γi is the i-th diagonal element of the diagonal matrix Γ. (M)·,i returns the i-th column of
the matrixM .

We also need fit the one-dimensional Gaussian distributions to the data projected to each
principal vector. Suppose that XS and XT have zero-means. We thus need only to compute the
variances in order to specify the Gaussians,

σ2
iS =

1

M
sT
iX

T
SXSsi, σ2

iT =
1

N
tTiX

T
TXT ti. (6.4)

Now we are ready to give the formulation to compute the ROD metric,

R(S, T ) =
1

d∗

d∗∑
i=1

θi

[
1

2

σ2
iS
σ2
iT

+
1

2

σ2
iT
σ2
iS
− 1

]
. (6.5)

thanks to that the KL-divergence between two Gaussian distributions has an analytical solution.
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Chapter 7

Discovering Latent Domains

So far we have been focusing on how to adapt a classifier from the labeled source domain such
that it achieves good performance on the target domain. While we develop the GFK and landmark
based approaches, we have assumed that the source and the target domains are already given.
However, this may be not the case in practice. It is the time for us to step back and investigate the
domains now (in addition to the adaptation). What exactly is a domain composed of? How are
domains different from each other? One pitfall is that the artificially collected datasets could be an
agglomeration of several distinctive domains. Thus, modeling a dataset as a single domain would
necessarily blend the distinctions, potentially damaging the discrimination in data and achieving
only suboptimal performance at the test stage.

In this chapter, we propose an approach to automatically discover latent domains in the
datasets. We show that reshaping data according to the discovered domains significantly im-
proves the adaptation performance on the test sets. Our formulation imposes two key properties
on domains: maximum distinctiveness and maximum learnability. By maximum distinctiveness,
we require the underlying distributions of the identified domains to be different from each other to
the maximum extent; by maximum learnability, we ensure that a strong discriminative model can
be learned from the domain. We devise a nonparametric formulation and efficient optimization
procedure that can successfully discover domains among both training and test data.

7.1 Motivation and main idea

A domain refers to an underlying data distribution. In most real applications, the distributions are
unknown and instead we observe some data samples drawn from them. Then, which groups of
data constitute which domains? For some applications, the answers come naturally. For example,
in speech recognition, we can organize data into speaker-specific domains where each domain
contains a single speaker’s utterances. In language processing, we can organize text data into
language-specific domains. For those types of data, we can neatly categorize each instance with
a discrete set of semantically meaningful properties; a domain is thus naturally composed of
instances of the same (subset of) properties.

For other applications, however, the same is not possible. Take visual recognition for instance.
In addition to large intra-category appearance variations, images and video of objects (or scenes,
attributes, activities, etc.) are also significantly affected by many extraneous factors such as pose,
illumination, occlusion, camera resolution, and background. Many of these factors simply do
not naturally lend themselves to deriving discrete domains. Furthermore, the factors overlap and
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interact in images in complex ways. In fact, even coming up with a comprehensive set of such
properties is a daunting task in its own right—not to mention automatically detecting them in
images!

Partially due to these conceptual and practical constraints, datasets for visual recognition
are not deliberately collected with clearly identifiable domains (Deng et al., 2009; Everingham
et al., 2007; Russell et al., 2008; Griffin et al., 2007; Weinland et al., 2007). Instead, standard
image/video collection is a product of trying to ensure coverage of the target category labels
on one hand, and managing resource availability on the other. As a result, a troubling practice
in visual domain adaptation research is to equate datasets with domains and study the problem
of cross-dataset generalization or correcting dataset bias (Torralba & Efros, 2011; Gong et al.,
2012a; Cao et al., 2010; Tommasi et al., 2012).

One pitfall of this ad hoc practice is that a dataset could be an agglomeration of several
distinctive domains. Thus, modeling the dataset as a single domain would necessarily blend the
distinctions, potentially damaging visual discrimination. Consider the following human action
recognition task, which is also studied empirically in this work. Suppose we have a training set
containing videos of multiple subjects taken at view angles of 30◦ and 90◦, respectively. Unaware
of the distinction of these two views of videos, a model for the training set as a single training
domain needs to account for both inter-subject and inter-view variations. Presumably, applying
the model to recognizing videos taken at view angle of 45◦ (i.e., from the test domain) would be
less effective than applying models accounting for the two view angles separately, i.e., modeling
inter-subject variations only.

How can we avoid such pitfalls? More specifically, how can we form characteristic domains,
without resorting to the hopeless task of manually defining properties along which to organize
them? We propose novel learning methods to automatically reshape datasets into domains. This
is a challenging unsupervised learning problem. At the surface, we are not given any information
about the domains that the datasets contain, such as the statistical properties of the domains, or
even the number of domains. Furthermore, the challenge cannot be construed as a traditional
clustering problem; simply clustering images by their appearance is prone to reshaping datasets
into per-category domains, as observed in (Hoffman et al., 2012) and our own empirical studies.
Moreover, there may be many complex factors behind the domains, making it difficult to model
the domains with parametric mixture models on which traditional clustering algorithms (e.g.,
Kmeans or Gaussian mixtures) are based.

Our key insights are two axiomatic properties that latent domains should possess: maximum
distinctiveness and maximum learnability. By maximum distinctiveness, we identify domains that
are maximally different in distribution from each other. This ensures domains are characteristic
in terms of their large inter-domain variations. By maximum learnability, we identify domains
from which we can derive strong discriminative models to apply to new testing data.

In Section 7.2, we describe our learning methods for extracting domains with these desirable
properties. We derive nonparametric approaches to measuring domain discrepancies and show
how to optimize them to arrive at maximum distinctiveness. We also show how to achieve maxi-
mum learnability by monitoring an extracted domain’s discriminative learning performance. The
learnability signals the number of latent domains underlying the datasets.

In Section 7.3, we show how to conditionally reshape the test data to different groups, each of
which is matched to an identified domain as much as possible. We then run the domain adaptation
algorithms upon the matched training-test pairs.
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7.2 Discovering latent domains from the training data

We assume that we have access to one or more annotated datasets with a total of M data instances.
The data instances are in the form of (xm, ym) where xm ∈ RD is the feature vector and ym ∈ [C]
the corresponding label out of C categories. Moreover, we assume that each data instance comes
from a latent domain zm ∈ [K] where K is the number of domains.

In what follows, we start by describing our algorithm for inferring zm assuming K is known.
Then we describe how to infer K from the data.

7.2.1 Maximally distinctive domains

Given K, we denote the distributions of unknown domainsDk by Pk(x, y) for k ∈ [K]. We do not
impose any parametric form on Pk(·, ·). Instead, the marginal distribution Pk(x) is approximated
by the empirical distribution P̂k(x)

P̂k(x) =
1

Mk

∑
m

δxmzmk,

where Mk is the number of data instances to be assigned to the domain k and δxm is an atom at
xm. zmk ∈ {0, 1} is a binary indicator variable and takes the value of 1 when zm = k. Note that
Mk =

∑
m zmk and

∑
kMk = M.

What kind of properties do we expect from P̂k(x)? Intuitively, we would like any two dif-
ferent domains P̂k(x) and P̂k′(x) to be as distinctive as possible. In the context of modeling vi-
sual data, this implies that intra-class variations between domains are often far more pronounced
than inter-class variations within the same domain. As a concrete example, consider the task of
differentiating commercial jetliners from fighter jets. While the two categories are easily distin-
guishable when viewed from the same pose (frontal view, side view, etc.), there is a significant
change in appearance when either category undergoes a pose change. Clearly, defining domains
by simply clustering the images by appearance is insufficient; the inter-category and inter-pose
variations will both contribute to the clustering procedure and may lead to unreasonable clusters.
Instead, to identify characteristic domains, we need to look for divisions of the data that yield
maximally distinctive distributions.

To quantify this intuition, we need a way to measure the difference in distributions. To this
end, we apply the kernel-based MMD method to examine whether two samples are from the
same distribution (Gretton et al., 2006). Concretely, let k(·, ·) denote a characteristic positive
semidefinite kernel (such as the Gaussian kernel) and φ(x) = k(·, x). We compute the the dif-
ference between the means of two empirical distributions in the reproducing kernel Hilbert space
(RKHS)H induced by the kernel function,

d(k, k′) =

∥∥∥∥∥ 1

Mk

∑
m

φ(xm)zmk −
1

M′k

∑
m

φ(xm)zmk′

∥∥∥∥∥
2

H

(7.1)

where φ(xm) is the image (or kernel-induced feature) of xm under the kernel. The measure
approaches zero as the number of samples tends to infinity, if and only if the two domains are the
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same, Pk = Pk′ . We define the total domain distinctiveness (TDD) as the sum of this quantity
over all possible pairs of domains:

TDD(K) =
∑
k 6=k′

d(k, k′), (7.2)

and choose domain assignments for zm such that TDD is maximized.

Label prior constraint In addition to the binary constraints on zmk, we also enforce

K∑
k=1

zmk = 1, ∀m ∈ [M], and
1

Mk

M∑
m=1

zmkymc =
1

M

M∑
m=1

ymc, ∀ c ∈ [C], k ∈ [K]

(7.3)

where ymc is a binary indicator variable, taking the value of 1 if ym = c.
The first constraint stipulates that every instance will be assigned to one domain and one

domain only. The second constraint, which we refer to as the label prior constraint (LPC),
requires that within each domain, the class labels are distributed according to the prior distribution
(of the labels), estimated empirically from the labeled data.

LPC does not restrict the absolute numbers of instances of different labels in each domain. It
only reflects the intuition that in the process of data collection, the relative percentages of different
classes are approximately in accordance with a prior distribution that is independent of domains.
For example, in action recognition, if the “walking” category occurs relatively frequently in a
domain corresponding to brightly lit video, we also expect it to be frequent in the darker videos.
Thus, when data instances are re-arranged into latent domains, the same percentages are likely to
be preserved.

The optimization problem (eq. (7.2) and eq. (7.3)) is NP-hard due to the integer constraints.
In the following, we relax it into a continuous optimization, which is more accessible with off-
the-shelf optimization packages.

Relaxation We introduce new variables βmk = zmk/Mk, and relax them to live on the simplex

βk = (β1k, · · · , βMk)T ∈ ∆ =

{
βk : βmk ≥ 0,

M∑
m=1

βmk = 1

}

for k = 1, · · · ,K. With the new variables, our optimization problem becomes

max
β

∑
k 6=k′

TDD(K) =
∑
k 6=k′

(βk − βk′)TK(βk − βk′) (7.4)

s.t. 1/M ≤
∑
k

βmk ≤ 1/C, m = 1, 2, · · · ,M, (7.5)

(1− δ)/M
∑
m

ymc ≤
∑
m

βmkymc ≤ (1 + δ)/M
∑
m

ymc, c = 1, · · · ,C, k = 1, · · · ,K,
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where K is the M ×M kernel matrix. The first constraint stems from the (default) requirement
that every domain should have at least one instance per category, namely, Mk ≥ C and every
domain should at most have M instances (Mk ≤ M). The second constraint is a relaxed version
of the LPC, allowing a small deviation from the prior distribution by setting δ = 1%. We assign
xm to the domain k for which βmk is the maximum of βm1, · · · , βmK.

This relaxed optimization problem is a maximization of convex quadratic function subject
to linear constraints. Though in general still NP-hard, this type of optimization problem has
been studied extensively and we have found existing solvers are adequate in yielding satisfactory
solutions.

7.2.2 Maximally learnable domains: determining the number of domains

Given M instances, how many domains hide inside? Note that the total domain distinctiveness
TDD(K) increases as K increases — presumably, in the extreme case, each domain has only a
few instances and their distributions would be maximally different from each other. However,
such tiny domains would offer insufficient data to separate the categories of interest reliably.

To infer the optimal K, we appeal to maximum learnability, another desirable property we
impose on the identified domains. Specifically, for any identified domain, we would like the data
instances it contains to be adequate to build a strong classifier for labeled data — failing to do so
would cripple the domain’s adaptability to new test data.

Following this line of reasoning, we propose domain-wise cross-validation (DWCV) to iden-
tify the optimal K. DWCV consists of the following steps. First, starting from K = 2, we use
the method described in the previous section to identify K domains. Second, for each identi-
fied domain, we build discriminative classifiers, using the label information and evaluate them
with cross-validation. Denote the cross-validation accuracy for the k-th domain by Ak. We then
combine all the accuracies with a weighted sum

A(K) = 1/M
K∑
k=1

MkAk.

For very large K such that each domain contains only a few examples, A(K) approaches the
classification accuracy using the class prior probability to classify. Thus, starting at K = 2 (and
assumingA(2) is greater than the prior probability’s classification accuracy), we choose K∗ as the
value that attains the highest cross-validation accuracy: K∗ = arg maxKA(K). For N-fold cross-
validation, a practical bound for the largest K we need to examine is Kmax ≤ min{M/(NC),C}.
Beyond this bound it does not quite make sense to do cross-validation.

7.3 Conditionally reshaping the test data

Not only the training data but also the test datasets may be composed of several latent domains.
However, the reshaping process of the test data has a critical difference from that of the training.
Specifically, we should reshape the test data conditioning on the identified domains from the
training datasets — the goal is to discover latent domains in the test datasets that match the
domains in the training datasets as much as possible. We term this conditional reshaping.
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Concretely, given the test data {(xtn, ytn)}Nn=1 potentially drawn from multiple domains, we
introduce indicator variables ztnv ∈ {0, 1}, n = 1, · · · ,N, v = 1, · · · ,K for the test data points,
and solve for the variables by minimizing the empirical distance between the distribution embed-
dings of an identified training domain and an latent domain of the test datasets, respectively,

min
{ztnv}

K∑
v=1

∥∥∥∥∥ 1

Mv

M∑
m=1

zmvφ(xm)− 1∑N
j=1 z

t
jv

N∑
n=1

ztnvφ(xtn)

∥∥∥∥∥
2

H

, (7.6)

where the values of zmv’s are inherited from Section 2 in the main text. Note that we do not
impose any balance constraints on ztnv, allowing the number of test domains smaller than that of
the training domains.

With βtnv = ztnv/
∑

j z
t
jv we relax problem (7.6) to

min
βt

∑
v

βtv
T
Ktβtv −

2

Mv
1TMv

Kvtβtv (7.7)

s.t. 0 ≤ βt ≤ 1, 1Tβtv = 1,∀v,
∑
v

βtnv ≤ 1, ∀n

where βv = (β1v, β2v, · · · , βNv)T , Kt
ij = k(xti,x

t
j), Kvt

ij = k(xvi ,x
t
j), and xvi is a train-

ing data point assigned to the v-th domain. Problem (7.7) is a convex quadratic programming
problem which can be solved efficiently. We recover the indicator variables by ztnv? = 1 if
v? = arg maxv β

t
nv.

After slicing the test datasets in this way, each slice/subset is also matched to a particular
training domain in terms of the smallest distribution distance. Arguably, the adaptation between
the matched pairs are easier than some arbitrary pairs or the original datasets.

7.4 Summary

We have introduced two axiomatic properties domains should possess, maximum distinctiveness
and maximum learnability, to discover latent domains from datasets. Accordingly, we proposed
nonparametric approaches encouraging the extracted domains to satisfy these properties. Since
in each domain the data discrimination is more consistent than that in the heterogeneous datasets,
stronger classifiers can be trained and better prediction performance can be achieved on the target
domain. We have also shown how to conditionally reshape the test data to match different groups
of them to the identified domains.
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Part III

Kernels in Determinantal Point Process
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Chapter 8

Sequential Determinantal Point Process and Video Summarization

Video summarization is a challenging problem with great application potentials. Whereas prior
approaches, largely unsupervised in nature, focus on sampling useful frames and assembling them
as summaries, we consider video summarization as a supervised subset selection problem. Our
idea is to teach the system to learn from human-created summaries how to select informative and
diverse subsets, so as to best meet evaluation metrics derived from human-perceived quality. To
this end, we propose the sequential determinantal point process (seqDPP), a new probabilistic
model for diverse sequential subset selection. Our novel seqDPP heeds the inherent sequential
structures in video data, thus overcoming the deficiency of the standard DPP, which treats video
frames as randomly permutable items. Meanwhile, seqDPP retains the power of modeling diverse
subsets, essential for summarization. Our extensive results summarizing videos from 3 datasets
demonstrate the superior performance of our method, compared to not only existing unsupervised
methods but also naive applications of the standard DPP model.

8.1 Introduction

It is an impressive yet alarming fact that there is far more video being captured—by consumers,
scientists, defense analysts, and others—than can ever be watched or browsed efficiently. For ex-
ample, 144,000 hours of video are uploaded to YouTube daily; lifeloggers with wearable cameras
amass Gigabytes of video daily; 422,000 CCTV cameras perched around London survey happen-
ings in the city 24/7; UAV’s patrol for 40 hours at a time collecting 27 Gigapixels per second.
With this explosion of video data comes an ever-pressing need to develop automatic video sum-
marization algorithms. By taking a long video as input and producing a short video (or keyframe
sequence) as output, video summarization has great potential to reign in raw video and make it
substantially more browseable and searchable.

Video summarization methods often pose the problem in terms of subset selection: among
all the frames (subshots) in the video, which key frames (subshots) should be kept in the output
summary? There is a rich literature in computer vision and multi-media developing a variety
of ways to answer this question (Hong et al., 2009; Ngo et al., 2003; Ma et al., 2002; Liu &
Kender, 2002; Pritch et al., 2007; Kang et al., 2006; Feng et al., 2012; Lee et al., 2012; Lu &
Grauman, 2013; Khosla et al., 2013). Existing techniques explore a plethora of properties that
a good summary should capture, designing criteria that the algorithm should prioritize when
deciding which subset of frames (or subshots) to select. These include representativeness (the
frames should depict the main contents of the videos) (Hong et al., 2009; Ngo et al., 2003; Khosla
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et al., 2013), diversity (they should not be redundant) (Liu & Kender, 2002; Zhang et al., 1997),
interestingness (they should have salient motion/appearance (Ngo et al., 2003; Ma et al., 2002;
Kang et al., 2006) or trackable objects (Pritch et al., 2007; Liu et al., 2010; Feng et al., 2012)),
or importance (they should contain important objects that drive the visual narrative) (Lee et al.,
2012; Lu & Grauman, 2013).

Despite valuable progress in developing the desirable properties of a summary, prior ap-
proaches are impeded by their unsupervised nature. Typically the selection algorithm favors
extracting content that satisfies criteria like the above (diversity, importance, etc.), and performs
some sort of frame clustering to discover events. Unfortunately, this often requires some hand-
crafting to combine the criteria effectively. After all, the success of a summary ultimately depends
on human perception. Furthermore, due to the large number of possible subsets that could be se-
lected, it is difficult to directly optimize the criteria jointly on the selected frames as a subset;
instead, sampling methods that identify independently useful frames (or subshots) are common.

To address these limitations, we propose to consider video summarization as a supervised
subset selection problem. The main idea is to use examples of human-created summaries—
together with their original source videos—to teach the system how to select informative subsets.
In doing so, we can escape the hand-crafting often necessary for summarization, and instead
directly optimize the (learned) factors that best meet evaluation metrics derived from human-
perceived quality. Furthermore, rather than independently select “high scoring” frames, we aim
to capture the interlocked dependencies between a given frame and all others that could be chosen.

To this end, we propose the sequential determinantal point process (seqDPP), a new proba-
bilistic model for sequential and diverse subset selection. The determinantal point process (DPP)
has recently emerged as a powerful method for selecting a diverse subset from a “ground set” of
items (Kulesza & Taskar, 2012), with applications including document summarization (Kulesza
& Taskar, 2011b) and information retrieval tasks (Gillenwater et al., 2012a). However, existing
DPP techniques have a fatal modeling flaw if applied to video (or documents) for summarization:
they fail to capture their inherent sequential nature. That is, a standard DPP for summarization
treats the inputs as bags of randomly permutable items agnostic to any temporal structure. Our
novel seqDPP overcomes this deficiency, making it possible to faithfully represent the temporal
dependencies in video data. At the same time, it lets us pose summarization as a supervised
learning problem.

While learning how to summarize from examples sounds appealing, why should it be possible—
particularly if the input videos are expected to vary substantially in their subject matter?1 Unlike
more familiar supervised visual recognition tasks, where test data can be reasonably expected
to look like the training instances, a supervised approach to video summarization must be able
to learn generic properties that transcend the specific content of the training set. For example,
the learner can recover a “meta-cue” for representativeness, if the input features record pro-
files of the similarity between a frame and its increasingly distant neighbor frames. Similarly,
category-independent cues about an object’s placement in the frame, the camera person’s active
manipulation of viewpoint/zoom, etc., could play a role. In any such case, we can expect the
learning algorithm to zero in on those meta-cues that are shared by the human-selected frames in
the training set, even though the subject matter of the videos may differ.

1After all, not all videos on YouTube are about cats.
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In short, our main contributions are: a novel learning model (seqDPP) for selecting diverse
subsets from a sequence, its application to video summarization (the model is applicable to other
sequential data as well), an extensive empirical study with three benchmark datasets, and a suc-
cessful first-step/proof-of-concept towards using human-created summaries for learning to select
subsets.

The rest of this chapter is organized as follows. In section 8.2, we review the basic con-
cepts of DPP, its application to document summarization, and a large-margin parameter learning
method. In section 8.3, we describe our seqDPP method, followed by the experimental results in
section 8.5. We conclude this chapter by section 8.6.

8.2 Determinantal point process (DPP)

The DPP was first used in quantum physics to characterize the Pauli exclusion principle, which
states that two identical particles cannot occupy the same quantum state simultaneously (Macchi,
1975). The ability to model exclusion/repulsion has made DPP an appealing tool in many other
applications where diversity is preferred, including document summarization (Kulesza & Taskar,
2011b), or image search and ranking (Kulesza & Taskar, 2011c). For example, in the task of
(extractive) document summarization, the goal is to generate a summary by selecting several
sentences from a long document (Dang, 2005; Lin & Bilmes, 2010). A good summary needs to
be both concise and informative of the original contents. As such, the selected sentences should
be not only diverse (i.e., different) from each other to reduce the redundancy in the summary, but
also representative of the topics in the document. To this end, Kulesza and Taskar applied DPP
to this task by modeling abstractly how diverse items can be selected from a ground set. They
achieved state-of-the-art performance on benchmark datasets (Kulesza & Taskar, 2011b, 2012).

In what follows, we give a brief account on DPP, how to apply it to document summarization,
and how to learn DPP models by the large-margin principle we derived in (Chao et al., 2015).

8.2.1 Background

Given a ground set of M items, Y = {1, 2, . . . ,M}, a DPP defines a probabilistic measure over
the power set, i.e., all possible subsets (including the empty set) of Y . Concretely, let L denote
a symmetric and positive semidefinite matrix in RM×M. The probability of selecting a subset
y ⊆ Y is given by

P (y;L) = det(L+ I)−1 det(Ly), (8.1)

where Ly denotes the submatrix of L, with rows and columns selected by the indices in y. I is
the identity matrix with the proper size. We define det (L∅) = 1. The above way of defining a
DPP is called an L-ensemble. An equivalent way of defining a DPP is to use a kernel matrix to
define the marginal probability of selecting a random subset:

Py =
∑
y′⊆Y

P (y′;L)I[y ⊆ y′ ] = det(Ky), (8.2)

57



where we sum over all subsets y′ that contain y (I[ · ] is an indicator function). The matrix K is
another positive semidefinite matrix, computable from the L matrix

K = L(L+ I)−1, (8.3)

and Ky is the submatrix of K indexed by y. Despite the exponential number of summands in
eq. (8.2), the marginalization is analytically tractable and computable in polynomial time.

Modeling Diversity One particularly useful property of the DPP is its ability to model pairwise
repulsion. Consider the marginal probability of having two items i and j simultaneously in a
subset:

P{i,j} = det

∣∣∣∣∣ KiiKij

KjiKjj

∣∣∣∣∣ = KiiKjj −K2
ij

≤ KiiKjj = P{i}P{j} ≤ min(P{i}, P{j}). (8.4)

Thus, unless Kij = 0, the probability of observing i and j jointly is always less than observing
either i or j separately. Namely, having i in a subset repulsively excludes j and vice versa.
Another extreme case is when i and j are the same; then Kii = Kjj = Kij , which leads to
P{i,j} = 0. Namely, we should never allow them together in any subset.

Consequently, a subset with a large (marginal) probability cannot have too many items that
are similar to each other (i.e., with high values of Kij). In other words, the probability provides
a gauge of the diversity of the subset. The most diverse subset, which balances all the pairwise
repulsions, is the subset that attains the highest probability

y∗ = arg maxy P (y;L). (8.5)

Note that this MAP inference is computed with respect to the L-ensemble (instead of K) as
we are interested in the mode, not the marginal probability of having the subset. Unfortunately,
the MAP inference is NP-hard (Ko et al., 1995). Various approximation algorithms have been
investigated (Gillenwater et al., 2012b; Kulesza & Taskar, 2012).

8.2.2 Learning DPPs for document summarization

Suppose we model selecting a subset of sentences as a DPP over all sentences in a document. We
are given a set of training samples in the form of documents (i.e., ground sets) and the ground-
truth summaries. How can we discover the underlying parameter L so as to use it for generating
summaries for new documents?

Note that the new documents will likely have sentences that have not been seen before in the
training samples. Thus, the kernel matrix L needs to be reparameterized in order to generalize
to unseen documents. (Kulesza & Taskar, 2011b) proposed a special reparameterization called
quality/diversity decomposition:

Lij = qiφ
T
i φjqj , qi = exp

(
1

2
θTxi

)
, (8.6)
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where φi is the normalized TF-IDF vector of the sentence i so that φT
i φj computes the cosine

angle between two sentences. On the other hand, the “quality” feature vector xi encodes the
contextual information about i as well as its representativeness of other items. In document
summarization, xi are the sentence lengths, positions of the sentences in the texts, and other meta
cues. The parameter θ is then optimized with maximum likelihood estimation (MLE) such that
the target subsets have the highest probabilities

θ∗ = arg maxθ
∑
n

logP (Y = y∗n;Ln(θ)), (8.7)

where Ln is the L matrix formulated using sentences in the n-th ground set, and y∗n is the corre-
sponding ground-truth summary.

8.2.3 Multiplicative Large-Margin DPPs

Maximum likelihood estimation does not closely track discriminative errors (Ng & Jordan, 2002;
Vapnik, 2000; Jebara, 2012). While improving the likelihood of the ground-truth subset y∗n, MLE
could also improve the likelihoods of other competing subsets. Consequentially, a model learned
with MLE could have modes that very different subsets yet are very close to each other in their
probability values. Having highly confusable modes is especially problematic for DPP’s NP-hard
MAP inference — the difference between such modes can fall within the approximation errors of
approximate inference algorithms such that the true MAP cannot be easily extracted.

To address these deficiencies, we derive a large-margin based approach (Chao et al., 2015)
aims to maintain or increase the margin between the correct subset and alternative, incorrect ones.
Specifically, we formulate the following large margin constraints

logP (y∗n;Ln) ≥ max
y⊆Yn

log `(y∗n,y)P (y;Ln)

= max
y⊆Yn

log `(y∗n,y) + logP (y;Ln), (8.8)

where `(y∗n,y) is a loss function measuring the discrepancy between the correct subset and an
alternative y. We assume `(y,y) = 0.

Intuitively, the more different y is from y∗n, the larger the gap we want to maintain between
the two probabilities. This way, the incorrect one has less chance to be identified as the most
diverse one. Note that while similar intuitions have been explored in multiway classification and
structured prediction, the margin here is multiplicative instead of additive — this is by design, as
it leads to a tractable optimization over the exponential number of constraints, as we will explain
later.

Design of the Loss Function A natural choice for the loss function is the Hamming distance
between y∗n and y, counting the number of disagreements between two subsets:

`H(y∗n,y) =
∑
i∈y

I[i /∈ y∗n] +
∑
i/∈y

I[i ∈ y∗n]. (8.9)
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In this loss function, failing to select the right item costs the same as adding an unnecessary item.
In many tasks, however, this symmetry does not hold. For example, in summarizing a document,
omitting a key sentence has more severe consequences than adding a (trivial) sentence.

To balance these two types of errors, we introduce the generalized Hamming loss function,

`ω(y∗n,y) =
∑
i∈y

I[i /∈ y∗n] + ω
∑
i/∈y

I[i ∈ y∗n]. (8.10)

When ω is greater than 1, the learning biases towards higher recall to select as many items in
yn as possible. When ω is significantly less than 1, the learning biases towards high precision to
avoid incorrect items as much as possible. Our empirical studies demonstrate such flexibility and
its advantages in two real-world summarization tasks (Chao et al., 2015).

Numerical optimization To overcome the challenge of dealing with an exponential number of
constraints in eq. (8.8), we reformulate it as a tractable optimization problem. We first upper-
bound the hard-max operation with Jensen’s inequality (i.e., softmax):

logP (y∗n;Ln) ≥ log
∑
y⊆Y

elog `ω(y∗n,y)P (y;Ln) = softmaxy⊆Yn log `ω(y∗n,y) + logP (y;Ln).

(8.11)
With the loss function `ω(y∗n,y), the right-hand-side is computable in polynomial time,

softmaxy⊆Yn log `ω(y∗n,y) + logP (y;Ln) = log

∑
i/∈y∗n

Knii + ω
∑
i∈y∗n

(1−Knii)

 , (8.12)

where Knii is the i-th element on the diagonal of Kn, the marginal kernel matrix corresponding
to Ln. The detailed derivation of this result is in the Appendix C. Note thatKn can be computed
efficiently from Ln through the identity eq. (8.3).

The softmax can be seen as a summary of all undesirable subsets (the correct subset yn does
not contribute to the weighted sum as `ω(y∗n,y

∗
n) = 0). Our optimization balances this term with

the likelihood of the target with the hinge loss function [z]+ = max(0, z),

min
∑
n

[
− logP (y∗n;Ln) + λ log

(∑
i/∈y∗n

Knii + ω
∑
i∈y∗n

(1−Knii)

)]
+

, (8.13)

where λ ≥ 0 is a tradeoff coefficient, to be tuned on validation datasets. Note that this objective
function subsumes maximum likelihood estimation where λ = 0. We optimize the objective
function with subgradient descent. Details are in the Appendix D.

8.3 Sequential DPPs for supervised videos summarization

Despite its success in document summarization (Kulesza & Taskar, 2011b), a direct application
of DPP to video summarization is problematic. The DPP model is agnostic about the order of the
items. For video data (and to a large degree, text data), the model does not respect the inherent
sequential structures. The second limitation is that the quality-diversity decomposition, while
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cleverly leading to a convex optimization, limits the power of modeling complex dependencies
among items. Specifically, only the quality factor qi is optimized on the training data. We develop
new approaches to overcome those limitations.

In what follows, we describe our approach for video summarization. Our approach contains
three components: (1) a preparatory yet crucial step that generates ground-truth summaries from
multiple human-created ones (section 8.3.1); (2) a new probabilistic model—the sequential de-
terminantal point process (seqDPP)—that models the process of sequentially selecting diverse
subsets (section 8.3.2); (3) a novel way of re-parameterizing seqDPP that enables learning more
flexible and powerful representations for subset selection from standard visual and contextual
features (section 8.3.3).

8.3.1 Generating ground-truth summaries

The first challenge we need to address is what to provide to our learning algorithm as ground-truth
summaries. In many video datasets, each video is annotated (manually summarized) by multiple
human users. While they were often well instructed on the annotation task, discrepancies are
expected due to many uncontrollable individual factors such as whether the person was attentive,
idiosyncratic viewing preferences, etc. There are some studies on how to evaluate automatically
generated summaries in the presence of multiple human-created annotations (Valdés & Martı́nez,
2012; Dumont & Mérialdo, 2009; Li & Merialdo, 2010). However, for learning, our goal is to
generate one single ground-truth or “oracle” summary per video.

Our main idea is to synthesize the oracle summary that maximally agrees with all annotators.
Our hypothesis is that despite the discrepancies, those summaries nonetheless share the com-
mon traits of reflecting the subject matter in the video. These commonalities, to be discovered
by our synthesis algorithm, will provide strong enough signals for our learning algorithm to be
successful.

To begin with, we first describe a few metrics in quantifying the agreement in the simplest
setting where there are only two summaries. These metrics will also be used later in our empirical
studies to evaluate various summarization methods. Using those metrics, we then analyze the
consistency of human-created summaries in two video datasets to validate our hypothesis. Finally,
we present our algorithm for synthesizing one single oracle summary per video,

Evaluation metrics Given two video summaries A and B, we measure how much they are in
agreement by first matching their frames, as they might be of different lengths. Following (Sandra
et al., 2011), we compute the pairwise distances between all frames across the two summaries.
Two frames are then “matched” if their visual difference is below some threshold; a frame is
constrained to appear in the matched pairs at most once. After the matching, we compute the
following metrics (commonly known as Precision, Recall and F-score):

PAB =
#matched frames

#frames in A
, RAB =

#matched frames
#frames in B

, FAB =
PAB ·RAB

0.5(PAB +RAB)
.

All of them lie between 0 and 1, and higher values indicate better agreement between A and B.
Note that these metrics are not symmetric – if we swap A and B, the results will be different.
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Figure 8.1: The agreement among human-created summaries is high, as is the agreement of the oracle
summary generated by our algorithm (cf. section 8.3.1) and human annotations.

Our idea of examining the consistency among all summaries is to treat each summary in turn
as if it were the gold-standard (and assign it as B) while treating the other summaries as A’s. We
report our analysis of existing video datasets next.

Consistency in existing video databases We analyze video summaries in two video datasets:
50 videos from the Open Video Project (OVP) (ope) and another 50 videos from Youtube (Sandra
et al., 2011). Details about these two video datasets are in section 8.5. We briefly point out that the
two datasets have very different subject matter and composition styles. Each of the 100 videos has
5 annotated summaries. For each video, we compute the pairwise evaluation metrics in precision,
recall, and F-score by forming in total 20 pairs of summaries from two different annotators. We
then average them per video. We plot how these averaged metrics distribute in Fig. 8.1. The
plots show the number of videos (out of 100) whose averaged metrics exceed certain thresholds,
marked on the horizontal axes. For example, more than 80% videos have an averaged F-score
greater than 0.6, and 60% more than 0.7. Note that there are many videos (≈20) with averaged F-
scores greater than 0.8, indicating that on average, human-created summaries have a high degree
of agreement. Note that the mean values of the averaged metrics per video are also high.

Greedy algorithm for synthesizing an oracle summary Encouraged by our findings, we de-
velop a greedy algorithm for synthesizing one oracle summary per video, from multiple human-
created ones. This algorithm is adapted from a similar one for document summarization (Kulesza
& Taskar, 2011b).

For each video, we initialize the oracle summary with the empty set y∗ = ∅. Iteratively, we
then add to y∗ one frame i at a time from the video sequence

y∗ ← y∗ ∪ arg maxi
∑
u

Fy∗∪i,yu . (8.14)

In words, the frame i is selected to maximally increase the F-score between the new oracle sum-
mary and the human-created summaries yu. To avoid adding all frames in the video sequence,
we stop the greedy process as soon as there is no frame that can increase the F-score.

We measure the quality of the synthesized oracle summaries by computing their mean agree-
ment with the human annotations. The results are shown in Fig. 8.1 too. The quality is high: more
than 90% of the oracle summaries agree well with other summaries, with an F-score greater than
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0.6. In what follows, we will treat the oracle summaries as ground-truth to inform our learning
algorithms.

8.3.2 Sequential determinantal point processes (seqDPP)

The determinantal point process, as described in section 8.2, is a powerful tool for modeling
diverse subset selection. However, video frames are more than items in a set. In particular, in
DPP, the ground set is a bag – items are randomly permutable such that the most diverse subset
remains unchanged. Translating this into video summarization, this modeling property essentially
suggests that we could randomly shuffle video frames and expect to get the same summary!

To address this serious deficiency, we propose sequential DPP, a new probabilistic model to
introduce strong dependency structures between items. As a motivating example, consider a video
portraying the sequence of someone leaving home for school, coming back to home for lunch,
leaving for market and coming back for dinner. If only visual appearance cues are available, a
vanilla DPP model will likely select only one frame from the home scene and repel other frames
occurring at the home. Our model, on the other hand, will recognize that the temporal span
implies those frames are still diverse despite their visual similarity. Thus, our modeling intuition
is that diversity should be a weaker prior for temporally distant frames but ought to act more
strongly for closely neighboring frames. We now explain how our seqDPP method implements
this intuition.

Model definition Given a ground set (a long video sequence) Y , we partition it into T disjoint
yet consecutive short segments

⋃T
t=1 Yt = Y . At time t, we introduce a subset section variable

Yt. We impose a DPP over two neighboring segments where the ground set is Ut = Yt ∪ yt−1,
ie., the union between the video segments and the selected subset in the immediate past. Let Ωt

denote the L-matrix defined over the ground set Ut. The conditional distribution of Yt is thus
given by,

P (Yt = yt|Yt−1 = yt−1) =
det Ωyt−1∪yt
det(Ωt + It)

. (8.15)

As before, the subscript yt−1 ∪ yt selects the corresponding rows and columns from Ωt. It is a
diagonal matrix, the same size asUt. However, the elements corresponding to yt−1 are zeros and
the elements corresponding to Yt are 1 (see (Kulesza & Taskar, 2012) for details). Readers who
are familiar with DPP might identify the conditional distribution is also a DPP, restricted to the
ground set Yt.

The conditional probability is defined in such a way that at time t, the subset selected should
be diverse among Yt as well as be diverse from previously selected yt−1. However, beyond those
two priors, the subset is not constrained by subsets selected in the distant past. Fig. 8.2 illustrates
the idea in graphical model notation. In particular, the joint distribution of all subsets is factorized

P (Y1 = y1, Y2 = y2, · · · , YT = yT ) = P (Y1 = y1)
∏
t=2

P (Yt = yt|Yt−1 = yt−1). (8.16)
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Y1 Y2 Y3 · · · Yt · · · YT

Y1 Y2 Y3 Yt YT

Figure 8.2: Our sequential DPP for modeling sequential video data, drawn as a Bayesian network

Inference and learning The MAP inference for the seqDPP model eq. (8.16) is as hard as
the standard DPP model. Thus, we propose to use the following online inference, analogous to
Bayesian belief updates (for Kalman filtering):

y∗1 = arg maxy∈Y1 P (Y1 = y) y∗2 = arg maxy∈Y2 P (Y2 = y|Y1 = y∗1) · · ·
y∗t = arg maxy∈Yt P (Yt = y|Yt−1 = y∗t−1) · · · · · ·

Note that, at each step, the ground set could be quite small; thus an exhaustive search for the most
diverse subset is plausible. The parameter learning is similar to the standard DPP model. We
describe the details in the supplementary material.

8.3.3 Learning representations for diverse subset selection

As described previously, the kernel L of DPP hinges on the reparameterization with features of
the items that can generalize across different ground sets. The quality-diversity decomposition in
eq. (8.6), while elegantly leading to convex optimization, is severely limited in its power in mod-
eling complex items and dependencies among them. In particular, learning the subset selection
rests solely on learning the quality factor, as the diversity component remains handcrafted and
fixed.

We overcome this deficiency with more flexible and powerful representations. Concretely, let
fi stand for the feature representation for item (frame) i, including both low-level visual cues and
meta-cues such as contextual information. We reparameterize the L matrix with fi in two ways.

Linear embeddings The simplest way is to linearly transform the original features

Lij = fTi W
TWfj , (8.17)

whereW is the transformation matrix.

Nonlinear hidden representation We use a one-hidden-layer neural network to infer a hidden
representation for fi

Lij = zTi W
TWzj where zi = tanh(Ufi), (8.18)

where tanh(·) stands for the hyperbolic transfer function.
To learn the parametersW orU andW , we use maximum likelihood estimation (cf. eq. (8.7)),

with gradient-descent to optimize. Details are given in the supplementary material.
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Table 8.1: Performance of various video summarization methods on OVP. Ours and its variants perform
the best.

Unsupervised methods Supervised subset selection
DT STIMO VSUMM1 VSUMM2 DPP + Q/D Ours (seqDPP+)

Q/D LINEAR N.NETS

F 57.6 63.4 70.3 68.2 70.8±0.3 68.5±0.3 75.5±0.4 77.7±0.4
P 67.7 60.3 70.6 73.1 71.5±0.4 66.9±0.4 77.5±0.5 75.0±0.5
R 53.2 72.2 75.8 69.1 74.5±0.3 75.8±0.5 78.4±0.5 87.2±0.3

8.4 Related work

Space does not permit a thorough survey of video summarization methods. Broadly speaking,
existing approaches develop a variety of selection criteria to prioritize frames for the output sum-
mary, often combined with temporal segmentation. Prior work often aims to retain diverse and
representative frames (Ngo et al., 2003; Hong et al., 2009; Khosla et al., 2013; Liu & Kender,
2002; Zhang et al., 1997), and/or defines novel metrics for object and event saliency (Ma et al.,
2002; Ngo et al., 2003; Kang et al., 2006; Lee et al., 2012). When the camera is known to
be stationary, background subtraction and object tracking are valuable cues (e.g., (Pritch et al.,
2007)). Recent developments tackle summarization for dynamic cameras that are worn or hand-
held (Khosla et al., 2013; Lee et al., 2012; Lu & Grauman, 2013) or design online algorithms to
process streaming data (Feng et al., 2012).

Whereas existing methods are largely unsupervised, our idea to explicitly learn subset selec-
tion from human-given summaries is novel. Some prior work includes supervised learning com-
ponents that are applied during selection (e.g., to generate learned region saliency metrics (Lee
et al., 2012) or train classifiers for canonical viewpoints (Khosla et al., 2013)), but they do not
train/learn the subset selection procedure itself. Our idea is also distinct from “interactive” meth-
ods, which assume a human is in the loop to give supervision/feedback on each individual test
video (Ellouze et al., 2010; Goldman et al., 2006; Liu et al., 2010).

Our focus on the determinantal point process as the building block is largely inspired by
its appealing property in modeling diversity in subset selection, as well as its success in search
and ranking (Kulesza & Taskar, 2011c), document summarization (Kulesza & Taskar, 2011b),
news headline displaying (Affandi et al., 2012), and pose estimation (Kulesza & Taskar, 2011a).
Applying DPP to video summarization, however, is novel to the best of our knowledge.

Our seqDPP is closest in spirit to the recently proposed Markov DPP (Affandi et al., 2012).
While both models enjoy the Markov property by defining conditional probabilities depending
only on the immediate past, Markov DPP’s ground set is still the whole video sequence, whereas
seqDPP can select diverse sets from the present time. Thus, one potential drawback of applying
Markov DPP is to select video frames out of temporal order, thus failing to model the sequential
nature of the data faithfully.

8.5 Experiments

We validate our approach of sequential determinantal point processes (seqDPP) for video sum-
marization on several datasets, and obtain superior performance to competing methods.
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Table 8.2: Performance of our method with different representation learning
VSUMM2 seqDPP+LINEAR seqDPP+N. NETS

F P R F P R F P R
Youtube 55.7 59.7 58.7 57.8±0.5 54.2±0.7 69.8±0.5 60.3±0.5 59.4±0.6 64.9±0.5
Kodak 68.91 75.7 80.6 75.3±0.7 77.8±1.0 80.4±0.9 78.9±0.5 81.9±0.8 81.1±0.9

8.5.1 Setup

Data We benchmark various methods on 3 video datasets: the Open Video Project (OVP), the
Youtube dataset (Sandra et al., 2011), and the Kodak consumer video dataset (Luo et al., 2009).
They have 50, 392, and 18 videos, respectively. The first two have 5 human-created summaries
per video and the last dataset has one human-created summary per video. Thus, for the first
two datasets, we follow the algorithm described in section 8.3.1 to create an oracle summary per
video.

We follow the same procedure as in (Sandra et al., 2011) to preprocess the video frames. We
uniformly sample one frame per second from a video and then apply two stages of pruning to
remove uninformative frames. Details are in the supplementary material.

Features Each frame is encoded with a `2-normalized 8192-dimensional Fisher vector φi (Per-
ronnin & Dance, 2007), computed from SIFT features (Lowe, 2004). The Fisher vector represents
well the visual appearance of the video frame, and is hence used to compute the pairwise corre-
lations of the frames in the quality-diversity decomposition (cf. eq. (8.6)). We derive the quality
features xi by measuring the representativeness of the frame. Specifically, we place a contextual
window centered around the frame of interest, and then compute its mean correlation (using the
SIFT Fisher vector) to the other frames in the window. By varying the size of the windows from
5 to 15, we obtain 12-dimensional contextual features. We also add features computed from the
frame saliency map (Hou & Zhang, 2007).

To apply our method for learning representations (cf. section 8.3.3), however, we do not make
a distinction between the two types, and instead compose a feature vector fi by concatenating
xi and φi. The dimension of our linear transformed features Wfi is 10, 40 and 100 for OVP,
Youtube, and Kodak, respectively. For the neural network, we use 50 hidden units and 50 output
units.

Other details For each dataset, we randomly choose 80% of the videos for training and use
the remaining 20% for testing. We run 100 rounds of experiments and report the average per-
formance, which is evaluated by the aforementioned F-score, Precision, and Recall (cf. sec-
tion 8.3.1). For evaluation, we follow the standard procedure: for each video, we treat each
human-created summary as golden-standard and assess the quality of the summary output by our
algorithm. We then average over all human annotators to obtain the evaluation metrics for that
video.

2In total there are 50 Youtube videos. We keep 39 of them after excluding the cartoon videos.
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Sequential LINEAR

(F=70, P=60, R=88)

Oracle
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(F=59, P=65, R=55)

Youtube
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Sequential LINEAR

(F=86, P=75, R=100)

VSUMM1

(F=50, P=100, R=33)

Kodak
(Video 4)

Figure 8.3: Exemplar video summaries results by our seqDPP LINEAR vs. VSUMM summary (Sandra
et al., 2011).

8.5.2 Results

We contrast our approach to several state-of-the-art methods for video summarization—which
include several leading unsupervised methods—as well as the vanilla DPP model that has been
successfully used for document summarization but does not model sequential structures. We
compare the methods in greater detail on the OVP dataset. Table 8.1 shows the results.

Unsupervised or supervised? The four unsupervised methods are DT (Mundur et al., 2006),
STIMO (Furini et al., 2010), VSUMM1 (Sandra et al., 2011), and VSUMM2 with a postprocessing
step to VSUMM1 to improve the precision of the results. We implement VSUMM ourselves using
features described in the orignal paper and tune its parameters to have the best test performance.
All 4 methods use clustering-like procedures to identify key frames as video summaries. Results
of DT and STIMO are taken from their original papers. They generally underperform VSUMM.

What is interesting is that the vanilla DPP does not outperform the unsupervised methods,
despite its success in other tasks. On the other end, our supervised method seqDPP, when coupled
with the linear or neural network representation learning, performs significantly better than all
other methods.

We believe the improvement can be attributed to two factors working in concert: (1) model-
ing sequential structures of the video data (2) more flexible and powerful representation learning.
This is evidenced by the rather poor performance of seqDPP with the quality/diversity (Q/D)
decomposition, where the representation of the items is severely limited such that modeling tem-
poral structures alone is simply insufficient.

Linear or nonlinear? Table 8.2 concentrates on comparing the effectiveness of these two types
of representation learning. The performances of VSUMM are provided for reference only. We see
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that learning representations with neural networks generally outperforms the linear representa-
tions.

Qualitative results We present exemplar video summaries results by different methods in Fig. 8.3.
The challenging Youtube video illustrates the advantage of sequential diverse subset selection.
The visual variance in the beginning of the video is far greater (due to close-shots of people) than
that at the end (fading out). Thus the clustering-based VSUMM method is prone to select key
frames from the first half of the video, collapsing the latter part. In contrast, our seqDPP copes
with time-varying diversity very well. The Kodak video demonstrates again our method’s ability
in attaining high recall when users only make diverse selections locally but not globally. VSUMM

fails to acknowledge temporally distant frames can be diverse despite their visual similarities.

8.6 Summary

Our novel learning model seqDPP is a successful first step towards using human-created sum-
maries for learning to select subsets for challenging problems such as video summarization. We
just scratched the surface of the fruit-bearing direction of supervised learning for subset selection.
Many research questions are open and have potential to advance the state-of-the-art to the next
level. For example, we plan to investigate how to learn even more powerful representations from
low-level visual cues and other meta cues for video summarization.
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Part IV

Experiments
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Chapter 9

Experiments

We evaluate our methods in the context of text sentiment analysis, visual object recognition,
and cross-view human action recognition. We compare them to baselines and other competing
domain adaptation methods. The general experimental setup is presented in Section 9.1, including
introduction to the learning tasks, benchmark datasets, and the feature representations of data.

We report first the recognition results of applying our geodesic flow kernel (GFK) approach
(section 9.2), followed by the results of our landmark-based approach (section 9.3). While the
landmark-based approach in general outperforms GFK on the benchmark datasets we have tested,
we believe that the method of GFK can stand alone separate from the landmarks idea, making its
results interesting and valuable in their own right. In particular, the kernel function can be used
as a building block for other methods, as exemplified by our success with the landmark approach.

We also investigate other practical issues in applying domain adaptation techniques to real-
world problems. In addition to improving the adaptation performance for a pair of given source
and target domains, we also study how we can select which source domain to pair with the target
domain using the proposed Rank-of-Domains (ROD), given multiple source domains and a target
domain. We use ROD to rank a list of source domains based on how suitable they are to domain
adaptation in Section 9.4.

As a novel application of the domain adaptation techniques, we investigate the dataset bias
problem, recently studied in (Torralba & Efros, 2011). Through their analysis, the authors iden-
tified a few visual datasets of high “market value”, suggesting that they are less biased, and more
representative of real-world objects. We re-examine these datasets with a new perspective: are
such high-valued datasets indeed useful in improving a target domain’s performance? Our anal-
ysis suggests it would be beneficial to also consider “ease of adaptability” in assessing the value
of datasets. We describe our findings in Section 9.5.

Finally, we report the results of identifying latent domains. Our experiments show that given
a mono-domain test set, adapting from the identified domains significantly outperforms from the
handcrafted domains. Note that the latter corresponds to several widely used benchmark datasets
in domain adaptation. We also present the experimental results of reshaping heterogeneous test
datasets into domains, by matching to the identified training domains.

9.1 Experimental setup

This section describes the general experimental setup, including learning tasks, benchmark datasets,
and the feature representations of data.
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Caltech-256                                         Amazon                                                DSLR                                                Webcam

Figure 9.1: Example images from the MONITOR category in Caltech-256, Amazon, DSLR, and
Webcam. Caltech and Amazon images are mostly from online merchants, while DSLR and
Webcam images are from offices. (Best viewed in color.)

9.1.1 Text sentiment analysis

Text sentiment analysis aims to detect or classify the attitude of a writer from the text. Such
attitude may be the writer’s affective state (e.g., happy, angry, sad, etc.), intended communication
goal that the writer wishes to convey to the readers, the judgement of the writer about something,
and so on. It is of particular interest for merchants to automatically analyze the consumers’
feedback about products or services.

In our experiments, we use a standard benchmark dataset on domain adaptation for the sen-
timent analysis task. It is a corpus of reviews for four types of products from Amazon: books,
DVDs, electronics, and kitchen appliances (Blitzer et al., 2007). The reviews contain star ratings
(1 to 5 stars). We follow the previous work and convert them to binary (i.e., positive or nega-
tive) labels of the reviews. The learning task is to label each review as the positive or negative
evaluation of the product.

Each type of products is taken as a domain and in each domain there are 1,000 positive and
1,000 negative reviews. We select the top 400 words of the largest mutual information with
the labels as the dictionary to extract feature representations of the reviews. We then represent
each review with a 400-dimensional vector of term counts (i.e., bag-of-words). The vectors are
normalized to have zero mean and unit standard deviation in each dimension.

9.1.2 Object recognition

We consider the object recognition task from images in this thesis. Given an image with an object,
the system outputs a category label to predict which category this object belongs to.

Our experiments use the three datasets which were studied in (Saenko et al., 2010): Amazon
(images downloaded from online merchants), Webcam (low-resolution images by a web camera),
and DSLR (high-resolution images by a digital SLR camera). Additionally, to validate the pro-
posed methods on a wide range of datasets, we add Caltech-256 (Griffin et al., 2007) as a fourth
dataset. We regard each dataset as a domain.

We extracted 10 classes common to all four datasets: BACKPACK, TOURING-BIKE, CALCU-
LATOR, HEAD-PHONES, COMPUTER-KEYBOARD, LAPTOP-101, COMPUTER-MONITOR, COM-
PUTER-MOUSE, COFFEE-MUG, and VIDEO-PROJECTOR. There are 8 to 151 samples per category
per domain, and 2533 images in total. Fig. 9.1 highlights the differences among these domains
with example images from the category of MONITOR.
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We report our results on adapting 10-way classification1 among those four domains. Our
results of competing methods are based on rerunning publicly available codes of those methods
or our implementation of them if the code is unavailable.

We follow similar feature extraction and experiment protocols used in previous work. Briefly,
we use SURF features (Bay et al., 2006) and encode the images with 800-bin histograms with the
codebook trained from a subset of Amazon images. The histograms are normalized first and then
z-scored to have zero mean and unit standard deviation in each dimension. We are sharing our
features (and code) publicly to promote direct reproducibility of our results2.

For experiments using GFK for adaptation, we conduct experiments in 20 random trials for
each pair of source and target domains. In each trial, we randomly sample labeled data in the
source domain as training examples, and unlabeled data in the target domain as testing examples.
This setting is in accordance with prior work (Saenko et al., 2010; Kulis et al., 2011; Gopalan
et al., 2011) and provides the maximal comparability to those methods. More details on how data
are split are provided in the next section. We report averaged accuracies on target domains as
well as standard errors. For GFK results, 1-nearest neighbor is used as our classifier as it does
not require cross-validating parameters. For our algorithms, the dimensionalities of subspaces
are selected according to the criterion in section 4.4. For methods we compare to, we use what is
recommended in the published work.

For experiments using our landmark-based approach for adaptation, we use all training in-
stances from the source domains. Except this difference, other training setups are the same as for
the experiments using GFK.

9.1.3 Cross-view human action recognition

For action recognition from video sequences, we use the IXMAS multi-view action dataset (Wein-
land et al., 2007). There are five views (Camera 0, 1, · · · , 4) of eleven actions in the dataset. Each
action is performed three times by twelve actors and is captured by the five cameras. We keep the
first five actions performed by alba, andreas, daniel, hedlena, julien, and nicolas such that the
irregularly performed actions (Weinland et al., 2007) are excluded. In each view, 20 sequences
are randomly selected per actor per action. We use the shape-flow descriptors to characterize the
motion of the actions (Tran & Sorokin, 2008). Each view is taken as a domain.

9.2 Adaptation via the GFK

We conduct extensive evaluations of various baseline and competing approaches: (1) NO ADAPT

where we use the original features, ie, without learning any new representations for domain adap-
tation; (2) PCAS where we project the original features into the PCA subspace learned from the
source domain; (3) PCAT where we project the original features into the PCA subspace learned

1In the supplementary material for our previously published work (Gong et al., 2012b), we report our results
on 31 categories common to Amazon, Webcam and DSLR, to compare directly to published results from the liter-
ature (Saenko et al., 2010; Kulis et al., 2011; Gopalan et al., 2011). Despite occasional discrepancies between the
published results and the results obtained by our own experimentation on these 31 categories, they demonstrate the
same trend—that our proposed methods significantly outperform competing approaches.

2http://www-scf.usc.edu/˜boqinggo/da.html
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from the target domain; (4) PCAS+T where we project the original features into the PCA sub-
space learned from the combined data from both the source and the target domains; (5) PLSS
where we project the original features into the Partial Least Squares (PLS) subspace computed
using the source domain’s labels. PLS is similar to PCA except it takes label information into
consideration, and thus can be seen as a form of supervised dimensionality reduction (Hastie
et al., 2009).

We also implement the method described in (Gopalan et al., 2011). We refer to it as the
geodesic flow sampling approach (GFS). While it also uses geodesic flows to model domain mis-
match between two domains, the approach samples a finite number of subspaces and uses them to
construct high-dimensional features, followed by dimensionality reduction and classification. As
the authors of this method suggest, we use PCA subspaces for both domains. We report results
on two variants: i) our implementation using the recommended parameters reported in (Gopalan
et al., 2011), such as the number of sampled subspaces and the reduced dimensionality (denoted
GFS (impl.)), and ii) our implementation using the optimal dimensionality automatically selected
by our algorithm (denoted GFS (opti.)).

For our approach, we use two types of subspaces for the source data: PCASand PLSS . For
the target domains, we use only PCAT as there are no labels. Thus, there are two variants of our
kernel-based method: GFK(PCAS , PCAT ) and GFK(PLSS , PCAT ).

9.2.1 Comparison results

Table 9.1 summarizes the classification accuracies as well as standard errors of all the above
methods for different pairings of the source and target domains. Note that, to fit the table within
the width of the page, we have shortened GFK(PCAS , PCAT ) to GFK(A,A), and GFK(PLSS , PCAT )
to GFK(S,A). The best group (differences up to one standard error) in each column are in bold
font and the second best group (differences up to one standard error) are in italics and underlined.

All domain adaptation methods improve accuracy over the baseline NO ADAPT. Further, our
GFK based methods in general outperform GFS. Moreover, GFK(PLSS , PCAT ) performs the best.
Two key factors may contribute to the superiority of our method: i) the kernel integrates all the
subspaces along the flow, and is hence able to model better the domain shift between the source
and the target; ii) this method uses a discriminative subspace (by PLS) in the source domain
to incorporate the label information. This has the benefit of avoiding projection directions that
contain noise and very little useful discriminative information, albeit making source and target
domains look similar. PCA, on the other hand, does not always yield subspaces that contain
discriminative information. Consequently all the improvements by our GFK(PLSS , PCAT ) over
GFS are statistically significant, with margins more than one standard error.

It is also interesting to note that the PCA-based baselines, especially PCAS+T and PCAT ,
perform quite well. They are often in the second-best performing group, and are even better
than the GFS methods on DLSR → Webcam and Webcam → DSLR. We suspect that because
the domain difference between DSLR and Webcam is small, either PCAT or PCAS+T is already
able to capture the commonness of the two domains well. For instance, both DSLR and Webcam
contain similar office images though with different resolutions (see Fig. 9.1 for an example). The
similarity between Webcam and DSLR is also confirmed by our ROD metric, which we will
describe in section 9.4.
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Figure 9.2: Selecting the optimal dimensionality d∗ with SDM (sec. 4.4); selected d∗ (where the
arrows point to) leads to the best adaptation performance. (Best viewed in color)

9.2.2 Semi-supervised domain adaptation

In semi-supervised adaptation, we have access to a small labeled set of target data. It is straight-
forward to extend our GFK approach to take advantage of the labeled data. Concretely, we
can construct GFK using the Partial Least Square subspace estimated on the target domain, i.e.,
GFK(PLSS , PLST ). We compare this approach to the metric learning based method METRIC

(Saenko et al., 2010) which uses the correspondence between source and target labeled data to
learn a Mahalanobis metric to map data into a new feature space.

Table 9.2 shows the results of all methods. Our GFK(PLSS , PCAT ) is still the best, followed by
GFK(PCAS , PCAT ). Note that though GFK(PLSS , PLST ) incorporates discriminative information
from both domains, it does not perform as well as GFK(PLSS , PCAT ). This is probably due to the
lack of enough labeled data in the target domains to give a reliable estimate of the PLS subspaces.
The METRIC method does not perform well either, probably due to the same reason.

9.2.3 Automatic inferring the dimensionality of subspaces

Being able to choose the optimal dimensionality for the subspaces is an important property of our
methods. Fig. 9.2 shows that the subspace disagreement measure (SDM) described in section 4.4
correlates well with recognition accuracies on the target domains. In the plots, the horizontal axis
is the proposed dimensionality (in log scale) and the right vertical axis reports accuracies on both
unsupervised domain adaptation and semi-supervised domain adaptation. The left vertical axis
reports the values of SDM.

The plots reveal two conflicting forces at play. As the dimensionality increases, SDM—as a
proxy to difference in geometric structures—quickly rises and eventually reaches its maximum
value of 1. Beyond that point, adaptation becomes difficult as the subspaces have orthogonal
directions.

However, before the maximum value is reached, the geometric difference is countered by the
increase in variances — a small dimensionality would capture very little variances in the source
domain data and would result in poor accuracies on both domains. The tradeoff occurs at where
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the geometric difference is just being maximized, justifying our dimensionality selection criterion
in eq. (4.9).

9.3 Adaptation via the landmark approach

Next we test our landmark adaptation approach. There are several hyper-parameters in the land-
mark approach. The threshold of βm in eq. (5.4) where we solve to select landmarks is set to
be a small number (10−8–10−10) due to floating point arithmetics. The RBF kernel bandwidths
in eq. (5.5) are σq = 2qσ0 with q ∈ {−6,−5, · · · , 5, 6}, where σ0 is the median of pairwise
distances among all training instances. This ensures we select at least one instance per category
and we do not select all instances in a category from the source domains as landmarks. The SVM
tradeoff parameters are tuned on the validation data, cf. section 5.4. In general, our experimental
results are robust to setting those parameters as long as we follow those mild guidelines.

9.3.1 Comparison results

Table 9.3 reports object recognition accuracies on the target under nine pairs of source and target
domains3. We contrast the proposed approach (LANDMARK) to the methods of transfer compo-
nent analysis (TCA) (Pan et al., 2009), geodesic flow sampling (GFS) (Gopalan et al., 2011), our
GFK approaches for inferring invariant features and then classifying with 1-NN and linear SVM
(GFK + 1NN and GFK + SUM), structural correspondence learning (SCL) (Blitzer et al., 2006), ker-
nel mean matching (KMM) (Huang et al., 2006), and a metric learning method (METRIC) (Saenko
et al., 2010) for semi-supervised domain adaptation, while label information (1 instance per cat-
egory) from the target domains is used. We also report the baseline results of NO ADAPT, where
we use source-only data and the original features to train classifiers.

Our approach LANDMARK clearly performs the best on almost all pairs, even when compared
to the METRIC method which has access to labels from the target domains. The only significant
exception is on the pair WEBCAM → DSLR. Error analysis reveals that the two domains are very
similar, containing images of the same object instance with different imaging resolutions. As
such, many data points in WEBCAM have been selected as landmarks, leaving very few instances
for model selection during the discriminative training. Addressing this issue is left for future
work.

Sentiment analysis Next, we report experimental results on the task of cross-domain sentiment
analysis of text. We use the Amazon dataset described in (Blitzer et al., 2007). The dataset
consists of product reviews on kitchen appliances, DVDs, books, and electronics. There are 1000
positive and 1000 negative reviews on each product type, each of which serves as a domain. We
reduce the dimensionality to use the top 400 words which have the largest mutual information
with the labels. We have found this preprocessing does not reduce performance significantly,
while being computationally advantageous. We use bag-of-words as features.

In Table 9.4, we compare our LANDMARK method to leading methods for domain adapta-
tion, including TCA (Pan et al., 2009), GFS (Gopalan et al., 2011), GFK (Gong et al., 2012b),

3We did not use DSLR as the source domain in these experiments as it is too small to select landmarks.
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Table 9.4: Sentiment classification accuracies on target domains. K: KITCHEN, D: DVD, B:
BOOKS, E: ELECTRONICS

% K→D D→B B→E E→K

NO ADAPTATION 72.7 73.4 73.0 81.4
TCA 60.4 61.4 61.3 68.7
GFS 67.9 68.6 66.9 75.1
GFK 69.0 71.3 68.4 78.2
SCL 72.8 76.2 75.0 82.9

KMM 72.2 78.6 76.9 83.5
METRIC 70.6 72.0 72.2 77.1

LANDMARK (ours) 75.1 79.0 78.5 83.4

SCL (Blitzer et al., 2006), KMM (Huang et al., 2006), METRIC (Saenko et al., 2010), as well as
the baseline NO ADAPTATION.

Note that while SCL and KMM improve over the baseline, the other three methods underper-
form. Nonetheless, our method outperforms almost all other methods. Most interestingly, our
method improves GFK significantly. We attribute its advantages to two factors: using multiple
scales to analyze distribution similarity while GFK uses the “default” scale, and using landmarks
to discriminatively learn invariant features.

It is also interesting to point out that, on the pair ELECTRONICS→KITCHEN, the improve-
ments of all the domain adaptation methods over NO ADAPTATION are limited (at most 2%). This
observation may direct some future work on studying under what situations adaptation techniques
help, and how we can automatically determine such situations.

9.3.2 Detailed analysis on landmarks

Next, we further examine the utility of landmarks in domain adaptation to better understand why
they are working as well as they do. We first study whether automatically selected landmarks
coincide with our modeling intuition, ie, that they look like samples from the target domain.

Fig. 9.3 confirms our intuition. It displays several landmarks selected from the source domain
AMAZON when the target domain is WEBCAM. The top-left panels display representative images
from the HEADPHONE and MUG categories from WEBCAM, and the remaining panels display
images from AMAZON, including both landmarks and those which are not.

When the scale σ is large, the selected landmarks are very similar in visual appearance to the
representative images. As the scale decreases, landmarks with greater variance start to show. This
is particularly pronounced at 2−3σ0. Nonetheless, they still look far more likely to be from the
target WEBCAM domain than non-landmark images (see bottom-right panels). Note that the non-
landmark images for the HEADPHONE category contain images such as earphones, or headphones
in packaging boxes. Similarly, non-landmark images in the MUG category are more unusually
shaped ones.

Component-wise analysis In Table 9.5, we contrast our method to some of its variants, illus-
trating quantitatively the novelty and significance of using landmarks to facilitate adaptation.
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First, we study the adverse effect of selecting incorrect images as landmarks. The row of
RAND. SEL. displays results of randomly selecting landmarks, as opposed to using the algo-
rithm proposed in Chapter 5. (The number of random landmarks is the average number of
“true” landmarks chosen in LANDMARK.) The averaged accuracies over 10 rounds are reported.
GFK+LANDMARK outperforms the random strategy, often by a significant margin, validating the
automatic selection algorithm.

The SWAP row in Table 9.5 gives yet another strong indication of how landmarks could be
viewed as samples from the target. Recall that landmarks are used as training data in the final
stage of our learning algorithm to infer the domain-invariant feature space (cf. section 5.4). Other
instances, ie, non-landmarks in the source, are used for model selection. This setup follows the
intuition that as landmarks are mostly similar to the target, they are a better proxy than non-
landmarks for optimizing discriminative loss for the target.

When we swap the setup, the accuracies drop significantly, except on the pair A→ D (com-
pare the rows SWAP and GFK+LANDMARK). This once again establishes the unique and ex-
tremely valuable role of landmarks.

We also study the usefulness of the class balancing constraint in eq. (5.3), which enforces that
the selected landmarks obey the class prior distribution. Without it, some classes dominate and
would result in poor classification results on the target domain. This is clearly evidenced in the
row of UNBALANCED where accuracies drop significantly after we remove the constraint.

Finally, we study the effect of using GFK to measure distribution similarity, as in eq. (5.5).
The row of EUC. + LANDMARK reports the results of using the conventional Euclidean distance,
illustrating the striking benefit of using GFK (in the row of GFK+LANDMARK). While using
nonparametric two-sample tests to measure distribution similarity has been previously used for
domain adaptation (e.g., kernel mean matching, cf. the row of KMM in Table 9.3), selecting a
proper kernel has received little attention, despite its vital importance. Our comparison to EUC.
SEL. indicates that measuring distribution similarity across domains is greatly enhanced with a
kernel revealing domain-invariant features.

Value of auxiliary tasks The auxiliary tasks are domain adaptation problems over new pairs of
source and target domains Sq → T q, cf. section 5.3. As indicated by Theorem 1, by incorporating
landmarks in the augmented target domain, the domain adaptation problem becomes easier to
solve.

Fig. 9.4 provides strong empirical evidence supporting the theorem. In the figure, we show
the object recognition accuracies on the original target domain as a result of solving those aux-
iliary tasks individually. Specifically, for each scale σq, we use the method of GFK to compute
Gq for the pair Sq → T q to extract invariant features then train a SVM classifier to minimize
classification errors on the landmarks. We contrast to GFK+SVM reported in Table 9.3, where the
only difference is to solve the original adaptation problem.

Clearly, the auxiliary tasks are easier to solve, resulting in more effective adaptations such
that the accuracies on the target domains are in general much better than GFK+SVM. This as-
serts firmly that landmarks bridge between the source and the target, and thus are an important
adaptation mechanism to exploit.

Benefits of multi-scale analysis and combining In Fig. 9.4, we also contrast results of indi-
vidual tasks to the proposed method LANDMARK where the solutions of multiple auxiliary tasks
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Figure 9.4: Performance of individual auxiliary tasks. The marked circle points on the curves
show recognition accuracies on the original target domain T , by using the kernel computed for
the auxiliary task. Individual auxiliary tasks do not perform as well as LANDMARK. However,
they all outperform GFK + SUM except when the scale is very small. In that case, all source
domain data are selected as landmarks and auxiliary tasks are not defined. The red circles denote
the auxiliary tasks whose kernels contribute to the final kernel F in eq. (5.7) after discriminative
learning.

Table 9.6: ROD values between 4 domains. Lower values signify stronger adaptability of the
corresponding source domain.

→ CALTECH AMAZON DSLR WEBCAM

CALTECH 0 0.003 0.21 0.09
AMAZON 0.003 0 0.26 0.05

DSLR 0.21 0.26 0 0.03
WEBCAM 0.09 0.05 0.03 0

are combined discriminatively. Combination clearly improves individual tasks. Moreover, we
also mark in red color those individual tasks whose kernels have contributed to the final solu-
tion in eq. (5.7). Note that, the selected scales are indeed sparse. Both observations support our
hypothesis that the data is modeled better with distances and similarities at multiple scales.

9.4 Which source domain should we use to adapt?

Now we examine whether the ROD metric (cf. Chapter 6) correlates with our empirical findings.
We compute ROD using PCA subspaces and report the values among the four domains in Table
9.6. In general, ROD correlates well with recognition accuracies on the target domains and can
reliably identify the best source domains to adapt. For example, when CALTECH is the target
domain (the first column), AMAZON has the smallest value and AMAZON indeed leads to bet-
ter classification accuracies on CALTECH than DSLR or WEBCAM. We find that the ROD metric
also corroborates strongly with recognition accuracies for semi-supervised domain adaptation,
cf. Table 9.2 in the Appendix. This further supports the value of the ROD metric as a barom-
eter indicating whether two datasets are intrinsically similar, in both geometrical and statistical
properties.
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If we group CALTECH and AMAZON into a meta-category “Online” and DSLR and WEB-
CAM into another meta-category “Office”, the distributions of ROD values with respect to the
categories suggest that the domains with the same meta-category have stronger similarity than
domain pairs crossing categories (such as CALTECH and DSLR). Thus ROD can also be used as a
measure to partition datasets into clusters, where datasets in the same cluster share latent proper-
ties that might be of surprise to their users — the presence of such properties is probably not by
design.

9.5 Ease of adaptation: a new perspective on datasets?

Torralba and Efors study the sources of dataset bias and the problem of cross-dataset general-
ization in several popular ones for object recognition (Torralba & Efros, 2011). To quantify the
quality of each dataset, they devise a “market value” metric. Datasets with higher values are more
diverse, and therefore are likely to reflect better the richness of real-world objects. In particular,
they point out that PASCAL VOC 2007 and ImageNet have high values. However, we hypoth-
esize that the market values could in some cases be overly pessimistic, since in their study no
attempts were made to explicitly account for domain shifts between datasets.

Thus, building on their findings, we turn the tables around and investigate: how valuable are
these datasets in improving a target domain’s performance?

Table 9.7 summarizes our results on a subset of datasets used in (Torralba & Efros, 2011);
PASCAL VOC 2007 (Everingham et al., 2007), ImageNet (Deng et al., 2009), and Caltech-101
(Fei-Fei et al., 2007). The recognition tasks are to recognize the category person and car. The
cross-dataset generalization results are shown on the left side of the table, without using adapta-
tion techniques (as in (Torralba & Efros, 2011)); and the adaptation results using our kernel-based
method are on the right side of the table.

The rows are the source domain datasets and the columns are the target domains. The “Drop”
columns report the percentages of drop in recognition accuracies between the source and the
averaged accuracy on target domains, ie, the “Mean Targets” columns. The rightmost “Improve-
ment” column is the percentage of improvement on target domains due to the use of domain
adaptation. Clearly, domain adaptation noticeably improves recognition accuracies on the target
domains. Caltech-101 is the exception where the improvement is marginal (47% vs. 46%). This
corroborates the low “market value” assigned to this dataset in (Torralba & Efros, 2011).

PASCAL VOC 2007 has the smallest drop without domain adaptation so it would appear to
be a better dataset than the other two. Once we have applied domain adaptation, we observe a
negative drop — ie, the performance on the target domains is better than on the source domain
itself! However, its improvement is not as high as ImageNet’s.

Our conjecture is that the data in PASCAL VOC 2007 can be partitioned into two parts: one
part is especially “hard” to be adapted to other domains and the other part is relatively “easy”.
The reverse of the performance drop suggests that the “easy” portion can be harvested by domain
adaptation techniques. However, the benefit is limited due to the “hard” part. On the other end,
for ImageNet, a larger portion of its data is perhaps amenable to adaptation. Hence, it attains a
bigger improvement after adaptation.

In short, while PASCAL VOC 2007 and ImageNet are assigned the same “market value”
in (Torralba & Efros, 2011), their usefulness to building object recognition systems that can be
applied to other domains needs to be carefully examined in the context of adaptation. It might be
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beneficial to incorporate the notion of “ease of adaptability” in the process of evaluating datasets
— a concept worth further exploring and refining.

9.6 Identifying latent domains from data

We validate our approach to discovering latent domains on visual object recognition and human
action recognition tasks. We first describe our evaluation strategy, and then report the results of
identifying latent domains and adapting classifiers to a new mono-domain test set. After that, we
present experimental results of reshaping heterogeneous test datasets into domains matching to
the identified training domains. Finally, we give some qualitative analyses and details on choosing
the number of domains.

9.6.1 Evaluation strategy

For object recognition, the four image datasets of Caltech-256 (C), Amazon (A), DSLR (D),
and Webcam (W) are commonly used as distinctive domains in research on visual domain adap-
tation (Saenko et al., 2010; Gopalan et al., 2011; Gong et al., 2012b; Bergamo & Torresani,
2010). Likewise, each view in the IXMAS dataset is often taken as a domain in action recogni-
tion (Farhadi & Tabrizi, 2008; Huang et al., 2012; Liu et al., 2011; Li & Zickler, 2012). Similarly,
in our experiments, we use a subset of these datasets (views) as source domains for training classi-
fiers and the rest of the datasets (views) as target domains for testing. However, the key difference
is that we do not compare performance of different adaptation algorithms which assume domains
are already given. Instead, we evaluate the effectiveness of our approach by investigating whether
its automatically identified domains improve adaptation, that is, whether recognition accuracy on
the target domains can be improved by reshaping the datasets into their latent source domains.

We use the geodesic flow kernel for adapting classifiers (Gong et al., 2012b). To use the
kernel-based method for computing distribution difference (cf. Chapter 7), we use Gaussian ker-
nels. We set the kernel bandwidth to be twice the median distances of all pairwise data points.
The number of latent domains K is determined by the DWCV procedure (cf. Section 7.2.2).

9.6.2 Identifying latent domains from training datasets

Notation Let S = {S1,S2, . . . ,SJ} denote the J datasets we will be using as training source
datasets and let T = {T1, T2, . . . , TL} denote the L datasets we will be using as testing target
datasets. Furthermore, let K denote the number of optimal domains discovered by our DWCV
procedure and U = {U1,U2, . . . ,UK} the K hidden domains identified by our approach. Let
r(A → B) denote the recognition accuracy on the target domain B with A as the source domain.

Goodness of the identified domains We examine whether {Uk} is a set of good domains
by computing the expected best possible accuracy of using the identified domains separately for
adaptation

GOURS = EB∈P max
k

r(Uk,B) ≈ 1

L

∑
l

max
k

r(Uk → Tl) (9.1)
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Table 9.8: Oracle recognition accuracy on target domains by adapting original or identified do-
mains

S A, C D, W C, D, W Cam 0, 1 Cam 2, 3, 4
T D, W A, C A Cam 2, 3, 4 Cam 0, 1

GORIG 41.0 32.6 41.8 44.6 47.1
GOTHER (Hoffman et al., 2012) 39.5 33.7 34.6 43.9 45.1

GOURS 42.6 35.5 44.6 47.3 50.3

Table 9.9: Adaptation recognition accuracies, using original and identified domains with different
multi-source adaptation methods

Latent Multi-DA A, C D, W C, D, W Cam 0, 1 Cam 2, 3, 4
Domains method D, W A, C A Cam 2, 3, 4 Cam 0, 1

ORIGINAL UNION 41.7 35.8 41.0 45.1 47.8

(Hoffman et al., 2012)
ENSEMBLE 31.7 34.4 38.9 43.3 29.6
MATCHING 39.6 34.0 34.6 43.2 45.2

OURS
ENSEMBLE 38.7 35.8 42.8 45.0 40.5
MATCHING 42.6 35.5 44.6 47.3 50.3

where B is a target domain drawn from a distribution on domains P . Since this distribution is not
obtainable, we approximate the expectation with the empirical average over the observed testing
datasets {Tl}. Likewise, we can defineGORIG where we compute the best possible accuracy for the
original domains {Sj}, andGOTHER where we compute the same quantity for a competing method
for identifying latent domains, proposed in (Hoffman et al., 2012). Note that the max operation
requires that the target domains be annotated; thus the accuracies are the most optimistic estimate
for all methods, and upper bounds of practical algorithms.

Table 9.8 reports the three quantities on different pairs of sources and target domains. Clearly,
our method yields a better set of identified domains, which are always better than the original
datasets. We also experimented using K-means or random partition for clustering data instances
into domains. Neither yields competitive performance and the results are omitted here for brevity.

Practical utility of identified domains In practical applications of domain adaptation algo-
rithms, however, the target domains are not annotated. The oracle accuracies reported in Table 9.8
are thus not achievable in general. In the following, we examine how closely the performance of
the identified domains can approximate the oracle if we employ multi-source adaptation.

To this end, we consider several choices of multiple-source domain adaptation methods:

• UNION The most naive way is to combine all the source domains into a single dataset and
adapt from this “mega” domain to the target domains. We use this as a baseline.

• ENSEMBLE A more sophisticated strategy is to adapt each source domain to the tar-
get domain and combine the adaptation results in the form of combining multiple clas-
sifiers (Hoffman et al., 2012).
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Table 9.10: Results of reshaping the test set when it consists of data from multiple domains.
From identified (Reshaping training only) No reshaping Conditional reshaping
A′ → F B′ → F C′ → F A

⋃
B

⋃
C → F X → FX , ∀X ∈ {A′, B′, C′}

Cam 012 36.4 37.1 37.7 37.3 38.5
Cam 123 40.4 38.7 39.6 39.9 41.1
Cam 234 46.5 45.7 46.1 47.8 49.2
Cam 340 50.7 50.6 50.5 52.3 54.9
Cam 401 43.6 41.8 43.9 43.3 44.8

• MATCHING This strategy compares the empirical (marginal) distribution of the source
domains and the target domains and selects the single source domain that has the smallest
difference to the target domain to adapt. We use the kernel-based method to compare
distributions, as explained in section 8.3. Note that since we compare only the marginal
distributions, we do not require the target domains to be annotated.

Table 9.9 reports the averaged recognition accuracies on the target domains, using either the
original datasets/domains or the identified domains as the source domains. The latent domains
identified by our method generally perform well, especially using MATCHING to select the single
best source domain to match the target domain for adaptation. In fact, contrasting Table 9.9 to
Table 9.8, the MATCHING strategy for adaptation is able to match the oracle accuracies, even
though the matching process does not use label information from the target domains.

9.6.3 Reshaping the test datasets

So far we have been concentrating on reshaping multiple annotated datasets (for training clas-
sifiers) into domains for adapting to test datasets. However, test datasets can also be made of
multiple latent domains. Hence, it is also instrumental to investigate whether we can reshape the
test datasets into multiple domains to achieve better adaptation results.

However, the reshaping process for test datasets has a critical difference from reshaping train-
ing datasets. Specifically, we should reshape test datasets, conditioning on the identified domains
from the training datasets — the goal is to discover latent domains in the test datasets that match
the domains in the training datasets as much as possible. We term this conditional reshaping.

Computationally, conditional reshaping is more tractable than identifying latent domains from
the training datasets. Concretely, we minimize the distribution differences between the latent
domains in the test datasets and the domains in the training datasets, as explained in Section 7.3.

Table 9.10 demonstrates the benefit of conditionally reshaping the test datasets, on cross-
view action recognition. This problem inherently needs test set reshaping, since the person may
be viewed from any direction at test time. (In contrast, test sets for the object recognition datasets
above are less heterogeneous.) The first column shows five groups of training datasets, each being
a different view, denoted byA,B andC. In each group, the remaining viewsD andE are merged
into a new test dataset, denoted by F = D

⋃
E.

Two baselines are included: (1) adapting from the identified domains A′, B′ and C ′ to the
merged dataset F ; (2) adapting from the merged datasetA

⋃
B
⋃
C to F . These are contrasted to

adapting from the identified domains in the training datasets to the matched domains inF . In most
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Figure 9.5: Exemplar images from the original and identified domains after reshaping. Note that
identified domains contain images from both datasets.
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Figure 9.6: Domain-wise cross-validation (DWCV) for choosing the number of domains.

groups, there is a significant improvement in recognition accuracies by conditional reshaping over
no reshaping on either training or testing, and reshaping on training only.

9.6.4 Analysis of identified domains and the optimal number of domains

It is also interesting to see which factors are dominant in the identified domains. Object appear-
ance, illumination, or background? Do they coincide with the factors controlled by the dataset
collectors?

Some exemplar images are shown in Figure 9.5, where each row corresponds to an original
dataset, and each column is an identified domain across two datasets. On the left of Figure 9.5
we reshape Amazon and Caltech-256 into two domains. In Domain II all the “laptop” images
1) are taken from the front view and 2) have colorful screens, while Domain I images are less
colorful and have more diversified views. It looks like the domains in Amazon and Caltech-256
are mainly determined by the factors of object pose and appearance (color).

The figures on the right are from reshaping DSLR and Webcam, of which the “keyboard”
images are taken in an office environment with various lighting, object poses, and background
controlled by the dataset creators (Saenko et al., 2010). We can see that the images in Domain
II have gray background, while in Domain I the background is either white or wooden. Besides,
keyboards of the same model, characterized by color and shape, are almost perfectly assigned to
the same domain. In sum, the main factors here are probably background and object appearance
(color and shape).

Figure 9.6 plots some intermediate results of the domain-wise cross-validation (DWCV) for
determining the number of domains K to identify from the multiple training datasets. In addition
to the DWCV accuracy A(K), the average classification accuracies on the target domain(s) are
also included for reference. We set A(K) to 0 when some categories in a domain are assigned
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with only one or no data point (as a result of optimization). Generally, A(K) goes up and then
drops at some point, before which is the optimal K? we use in the experiments. Interestingly,
the number favored by DWCV coincides with the number of datasets we mix, even though,
as our experiments above show, the ideal domain boundaries do not coincide with the dataset
boundaries.

9.7 Summary

We have experimentally compared our approaches to several competitive existing methods in the
context of sentiment analysis, visual object recognition, and cross-view human action recognition.
Our GFK and landmark based adaptation algorithms give rise to the state-of-the-art results on
those tasks. In addition to the comparison results, we have also carefully conducted detailed
analyses to validate each component in our approaches. The proposed ROD metric is able to
rank the source domains according to their adaptabilities to the target domain. The latent domain
discovering experiments raise some concerns on the existing benchmark datasets and may shift
some research attention in the community to the domain itself (in contrast to adaptation).
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Part V

Conclusion
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Chapter 10

Concluding Remarks

We summarize the thesis and discuss some future directions in this section.

10.1 Summary of our work on domain adaptation

This thesis has provided a comprehensive set of techniques with multiple levels of focus on unsu-
pervised domain adaptation, including learning domain-invariant feature representations in order
to eliminate the discrepancy between the source domain and the target domain (Chapter 4), ma-
nipulating data instances to match the distributions of two domains (Chapter 5), discovering latent
domains from heterogeneous data so the individual domains can be better and more efficiently
modeled (Chapter 7), and quantizing the “adaptabilities” of different source domains given a
particular target domain (Chapter 6).

10.1.1 Domain adaptation algorithms

We develop two feature learning approaches to reducing the gap between the source domain and
the target domain, such that the classifiers trained from the source domain also perform well
on the target. In the geodesic flow kernel (GFK) (cf. Chapter 4), we model the domain shift
by the continuously changing subspaces. The overall kernel, GFK, averages out the individual
domains’ idiosyncrasies. It is computationally efficient thanks to the closed-form solution, con-
ceptually clean with only one free hyper-parameter, and empirically effective as validated on
several benchmark datasets for domain adaptation.

In addition to subspaces, we have also studied a new intrinsic structure in domain adapta-
tion, the landmarks (cf. Chapter 5). Landmarks are labeled source instances; however, they can
also be seen as sampled from the target distribution. Under the covariate shift assumption, the
classifiers trained from them are easier to adapt to the target than those trained using the other
source instances or the whole source sample. We develop a quadratic programming formulation
to automatically identify the landmarks from the source domain. Our GFK and landmark based
adaptation methods are among the state-of-the-art algorithms in text sentiment analysis and visual
object recognition.
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10.1.2 The “adaptability” of a source domain

In terms of how to evaluate the “adaptability” of a source domain without actually running any
domain adaptation methods, we propose a rank-of-domains (ROD) metric (cf. Chapter 6). ROD
accounts for both geometric and statistical properties between two domains. When we have mul-
tiple source domains to train our models for the target, we can use the ROD metric to determine
the source domain which potentially gives rise to the best performance on the target.

10.1.3 How to define a domain

In terms of the notion of domain, we raise the concern about the existing benchmark datasets
for domain adaptation. Particularly, we claim that it is hard to manually define what constitutes
a domain in some applications (e.g., image and video data). If we take the easy alternative and
simply treat a dataset as a domain, the adaptation performance is likely limited on the target.
To automatically discover domains from data, we propose two axiomatic properties. One is
maximum distinctiveness, implying that the domains should be as distinctive from each other as
possible. The other is maximum learnability, so that from the discovered domains we can learn
strong classifiers. We implement these two properties in a nonparametric fashion and validate our
method on visual object recognition and cross-view human action recognition.

10.1.4 Kernel methods in probabilistic models

Our domain adaptation approaches have been taking the advantages of the flexible kernel meth-
ods. Finally, we exploit another application of the kernel methods in a probabilistic model, de-
terminantal point process (DPP), and demonstrate its effectiveness in video summarization. We
cast video summarization as a supervised subset selection problem, which is in sharp contrast to
the existing methods which are largely unsupervised. In particular, we derive a sequential de-
terminantal point process (seqDPP) to learn from human-created video summaries. The seqDPP
model encourages the adjacent summary frames diverse from each other and imposes less con-
straints on the distant frames. It outperforms several competing baselines on three datasets for
video summarization.

10.2 Remarks on future work

Domain adaptation is prevalent in various real-world applications. It is in general a fruit-bearing
field and is worth more research efforts. In order to develop well-performed algorithms, we
have to carefully examine the relationship between domains. However, there could be even no
solutions to domain adaptation if the distributions of the source domain and the target domain
differ arbitrarily.

We shall continue the research on domain adaptation and hope to develop the next generation
of statistical machine learning algorithms which are capable of handling the mismatches in data,
i.e., algorithms not limited by the simple assumption that the training and test data are drawn
i.i.d. from the same distribution. In the following we mainly discuss the future work under two
scenarios, video analysis and dealing with massive data.
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10.2.1 Structured prediction for temporal video data

Domain adaptation is of great importance for the learning tasks of temporal data, especially video
data. About 144,000 hours of video are uploaded to YouTube daily. Around 422,000 CCTV
cameras perched around London survey happenings in the city 24/7. With this explosion of
video data, there is an ever-pressing need to develop automatic video analysis techniques which
often require human labeling information to learn from. However, it is extremely tedious and
time-consuming to label the video data — annotators have to, for example, watch a whole video
sequence of minutes or hours to create a reliable video summary! On the other hand, we have
noticed that there exist many large datasets with labeled images. Can we alleviate the workload of
labeling the temporal video data by adapting the labeling information from the existing datasets
of still images?

We will develop advanced domain adaptation algorithms tailored for the video data to answer
this question. Note that structured prediction prevails in video-related tasks, such as video sum-
marization and action localization. However, most existing adaptation methods are neither tuned
to model the temporal structure nor designed for structured prediction. Although still one might
be able to use them to adapt between the labeled image datasets and the frames of videos, our
hunch is that such results will be significantly improved if we can advance the adaptation methods
by explicitly modeling the motion cue as a structured prediction problem.

10.2.2 Reducing mismatches in massive data

The emerging “big data” provide great sources of discovery and knowledge. Meanwhile, it
poses grand challenges to the current data analysis and management techniques. The National
Academies report on “Frontiers in Massive Data Analysis”1 identifies a list of major challenges
that require new approaches to supporting the “big data” era. Among them, this thesis work is
well aligned with “coping with sampling biases and heterogeneity”, as justified by the follow-
ing quote from the report.

“A major issue is that of sampling bias. Data may have been collected according to
a certain criterion · · · , but the inferences and decisions · · · may refer to a different
sampling criterion. This issue seems likely to be particularly severe in many massive
data sets, which often consist of many subcollections of data, each collected accord-
ing to a particular choice of sampling criterion and with little control over the overall
composition.”

My research will explore several avenues to reduce the mismatches in massive data, includ-
ing: learning good feature representations, developing efficient algorithms to reshape the massive
data to domains which are individually more homogeneous, online learning algorithms to update
along with the growth of the available (labeled) data, and investigating our models in applied
research especially computer vision. The remaining of this section describes some specific future
directions.

1The report is by the committee on the analysis of massive data, the committee on applied and theoretical statistics,
and the board on mathematical sciences and their applications, jointly. It is publicly available at http://www.nap.
edu/catalog/18374/frontiers-in-massive-data-analysis.
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Representation learning Good feature representations should be robust to noises and outliers,
invariant to heterogeneity, and concise to save storage and computation resources. Deep
learning is powerful and versatile in this sense. Efficient kernel learning and/or approx-
imation methods have also gained some success on large-scale datasets. However, most
of them (and other approaches for the same purpose) currently lack the dimension of ex-
plicitly modeling the mismatches in data. We believe it is a promising avenue to learn
representations which are resilient to the discrepancies in massive data.

Massive data reshaping A heterogeneous large-scale dataset can be regarded as a mixture of
several individually more homogeneous sub-collections, or domains. We conjecture that
we can gain an overall improvement by reshaping the data to such domains and then mod-
eling them individually, probably with some regularizations similar to multi-task learning.
This is partially verified by our empirical findings in (Gong et al., 2013a). Nonetheless,
the nonparametric approach developed there is inefficient to handle the large datasets. We
anticipate to have some greedy algorithms to implement the maximum distinctiveness and
maximum learnability criteria (Gong et al., 2013a).

Online and personalized domain adaptation Online systems are rapidly updating and sophis-
ticating. Almost everyone has multiple online accounts nowadays. As a result, it would be
a great convenience for users to have personalized tools to organize and retrieve informa-
tion. Domain adaptation techniques can facilitate intelligence systems to adapt to different
personalized needs. Moreover, online adaptation is highly desirable, considering that the
preferences of the users may change over time.
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A Derivation of the geodesic flow kernel (GFK)

Let ΩT denote the following matrix

ΩT = [PS RS ]

[
U1 0

0 U2

]
. (1)

The geodesic flow Φ(t), t ∈ (0, 1), between PS and PT can be written as

Φ(t) = PSU1Γ(t)−RSU2Σ(t) = ΩT

[
Γ(t)

−Σ(t)

]
. (2)

Recall that the geodesic flow kernel (GFK) is defined as,

〈z∞i , z∞j 〉 =

∫ 1

0
(Φ(t)Txi)

T(Φ(t)Txj) dt = xT
iGxj , (3)

where

G =

∫ 1

0
Φ(t)Φ(t)Tdt. (4)

Substituting the expression of Φ(t) of eq. (2) into above, we have (ignoring Ω for the moment),

G ∝
∫ 1

0

[
Γ(t)Γ(t) −Γ(t)Σ(t)

−Σ(t)Γ(t) Σ(t)Σ(t)

]
dt (5)

Both Γ(t) and Σ(t) are diagonal matrices with elements being cos(tθi) and sin(tθi). Thus, we
can integrate in close-form,

λ1i =

∫ 1

0
cos2(tθi)dt = 1 +

sin(2θi)

2θi
, (6)

λ2i = −
∫ 1

0
cos(tθi) sin(tθi)dt =

cos(2θi)− 1

2θi
(7)

λ3i =

∫ 1

0
sin2(tθi)dt = 1− sin(2θi)

2θi
, (8)

which become the i-th diagonal elements of diagonal matrices Λ1, Λ2, and Λ3 respectively. In
terms of these matrices, the inner product eq. (3) is a linear kernel xT

iGxj with the matrix G
given by

G = ΩT

[
Λ1 Λ2

Λ2 Λ3

]
Ω. (9)

B Proof of Theorem 1

We first prove the following lemma.
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Lemma. Under the condition of the Theorem 4, the following inequality holds,

KL(PS‖PL) ≤ KL(PS‖PT ) (10)

Proof We start with

KL(PS‖PT ) = KL(αPN + (1− α)PL‖PT )

=

∫
[αPN + (1− α)PL] log

αPN + (1− α)PL
PT

dX

We now use the property that log function is concave to arrive at

KL(PS‖PT ) ≥
∫

[αPN + (1− α)PL]

[
α log

PN
PT

+(1− α) log
PL
PT

]
dX

= α2KL(PN‖PT ) + (1− α)2KL(PL‖PT )

+ α(1− α)C(PL, PN , PT ), (11)

where

C(PL, PN , PT ) =

∫ (
PN log

PL
PT

+ PL log
PN
PT

)
dX

=

∫ (
PN log

PN
PT
− PN log

PN
PL

+ PL log
PL
PT
− PL log

PL
PN

)
dX

= KL(PN‖PT )−KL(PN‖PL) +KL(PL‖PT )−KL(PL‖PN ) (12)

Substituting eq. (12) into eq. (11), we have

KL(PS‖PT ) ≥ αKL(PN‖PT ) + (1− α)KL(PL‖PT )

− α(1− α) [KL(PN‖PL) +KL(PL‖PN )]

(13)

Applying to the right hand side of the inequality the condition of the Theorem 4, we have

KL(PS‖PT ) ≥
[

9

8
− 2α(1− α)

]
A (14)

where A = max {KL(PN‖PL), KL(PL‖PN )}.
Note that

9

8
− 2α(1− α) ≥ α

as the maximum of 2α(1− α) + α is 9/8, attained at α = 3/4. This leads to

KL(PS‖PT ) ≥ αA ≥ αKL(PN‖PL) (15)
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To complete the proof the lemma, note that due to the convexity of KL-divergence, we have

KL(PS‖PL) = KL(αPN + (1− α)PL‖PL) ≤ αKL(PN‖PL)

Combining the last two inequalities together, we complete the proof of the lemma.

Proof of the Theorem We start by applying the convex property of the KL-divergence again,

KL(PS‖QT ) = KL(PS‖βPT + (1− β)PL)

≤ βKL(PS‖PT ) + (1− β)KL(PS‖PL)

≤ βKL(PS‖PT ) + (1− β)KL(PS‖PT )

≤ KL(PS‖PT ) (16)

where we have applied the Lemma 1 in the penultimate inequality. The last inequality states the
desired result of the theorem.

C Calculating the softmax of large-margin DPPs

In Section 8.2.3, we use softmax to deal with the exponential number of large-margin constraints
and arrive at eq. (8.12) in the main text. Here we show how to calculate the right-hand side of
eq. (8.12).

We first compute
∑
y⊆Yn `ω(y∗n,y)P (y;Ln) as follows∑

y⊆Yn

`ω(y∗n,y)P (y;Ln)

=
∑
y⊆Yn

[ ∑
i:i∈y

I(i /∈ y∗n) + ω
∑
i:i/∈y

I(i ∈ y∗n)

]
P (y;Ln) (17)

=

M∑
i=1

[ ∑
y:i∈y

I(i /∈ y∗n)P (y;Ln) + ω
∑
y:i/∈y

I(i ∈ y∗n)P (y;Ln)

]
(18)

=
M∑
i=1

[
I(i /∈ y∗n)Pn{i} + ωI(i ∈ y∗n)

(
1− Pn{i}

)]
(19)

=
∑
i:i/∈y∗n

Pn{i} + ω
∑
i:i∈y∗n

(1− Pn{i}) (20)

=
∑
i:i/∈y∗n

Knii + ω
∑
i:i∈y∗n

(1−Knii), (21)
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where Pn{i} = Knii is the marginal probability of selecting item i. Now we are ready to see

softmaxy⊆Yn log `ω(y∗n,y) + logP (y;Ln)

= log
∑
y⊆Yn

`ω(y∗n,y)P (y;Ln) (22)

= log

 ∑
i:i/∈y∗n

Knii + ω
∑
i:i∈y∗n

(1−Knii)

 . (23)

Moreover, recall thatK = L(L+ I)−1. Eigen-decomposing L =
∑

m λmvmv
T
m, we have

K = L(L+ I)−1 =
∑
m

λm
λm + 1

vmv
T
m,

and thus, Kii =
∑
m

λm
λm + 1

v2
mi. (24)

D Subgradients of the large-margin DPPs

Recall that our objective function in eq. (8.13) of the main text actually consists of a likelihood
term L(·) and the other term of undesirable subsets. Denote them respectively by

L(θ;Yn,y∗n) , logP (y∗n;Ln)

= log det(Lny∗n
)− log det(Ln + I), (25)

A(θ;Yn,y∗n) , log

∑
i/∈y∗n

Knii + ω
∑
i∈y∗n

(1−Knii)

 . (26)

For brevity, we drop the subscript n of Ln and Knii and change y∗n to y? in what follows.

To compute the overall subgradients, it is sufficient to compute the gradients of the above two
terms, L and A.

∂L
∂θk

=
∑
i,j

∂L
∂Lij

∂Lij
∂θk

= 1T
(
∂L
∂L
◦ ∂L
∂θk

)
1,

∂A
∂θk

= 1T
(
∂A
∂L
◦ ∂L
∂θk

)
1, (27)

where ◦ stands for the element-wise product between two matrices of the same size. We use the
chain rule to decompose ∂L

∂θk
from the overall gradients on purpose. Therefore, if we change the

way of parameterizing the DPP kernel L, we only need care about ∂L
∂θk

when we compute the
gradients for the new parameterization.
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D.1 Gradients of the quality-diversity decomposition

In terms of the quality-diversity decomposition (c.f. eq. (7) and (8) in the main text), we have

∂Lij
∂θk

= Lij(xik + xjk), or
∂L

∂θk
= L ◦ (Xek1

T + 1eTkX
T ) (28)

where q is the vector concatenating the quality terms qi,X is the design matrix concatenating xTi
row by row, and ek stands for the standard unit vector with 1 at the k-th entry and 0 elsewhere.

D.2 Gradients with respect to the DPP kernel

In what follows we calculate ∂L
∂L and ∂A

∂L in eq. (27). Noting that eq. (27) sums over all the (i, j)
pairs, we therefore do not need bother taking special care of the symmetric structure in L.

We will need map Ly? “back” to a matrix M which is the same size as the original matrix
L, such that My? = Ly? and all the other entries of M are zeros. We denote by 〈Ly?〉 such
mapping, i.e., 〈Ly?〉 = M . Now we are ready to see,

∂L
∂L

=
∂ log det(Ly?)

∂L
− ∂ log det(L+ I)

∂L
= 〈(Ly?)−1〉 − (L+ I)−1. (29)

It is a little more involved to compute

∂A
∂L

=
1∑

i/∈y? Kii + ω
∑

i∈y?(1−Kii)
×

∑
i/∈y?

∂Kii

∂L
− ω

∑
i∈y?

∂Kii

∂L

 , (30)

which involves ∂Kii
∂L .

In order to calculate ∂Kii
∂L , we start from the basic identity (Beyer, 1991) of

∂A−1

∂t
= −A−1∂A

∂t
A−1, (31)

followed by ∂A−1

∂Amn
= −A−1JmnA−1, where Jmn is the same size asA. The (m,n)-th entry of

Jmn is 1 and all else are zeros.

Let A = (L + I). Noting that K = L(L + I)−1 = I − (L + I)−1 = I −A−1 and thus
Kii = 1−

[
A−1

]
ii

, we have,

∂Kii

∂Lmn
= −

∂
[
A−1

]
ii

∂Lmn
= −

∂
[
A−1

]
ii

∂Amn
=
[
A−1JmnA−1

]
ii

= [A−1]mi[A
−1]ni. (32)
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We can also write eq. (32) in the matrix form,

∂Kii

∂L
= [A−1]·i[A

−1]T·i

= A−1eie
T
i A
−1 = A−1J iiA−1, (33)

where [A−1]·i is the i-th column ofA−1.
Overall, we arrive at a concise form by writing out the right-hand-side of eq. (30) and merging

some terms, ∑
i/∈y?

∂Kii

∂L
− ω

∑
i∈y?

∂Kii

∂L

= A−1Iω(y?)A
−1 = (L+ I)−1Iω(y?)(L+ I)−1 (34)

where Iω(y?) looks like an identity matrix except that its (i, i)-th entry is −ω for i ∈ y?.
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