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Abstract

As the development of techniques for modeling, digitizing and visualizing, 3D

data are now becoming explosion in number and are widely recognized as the

upcoming wave of digital media. In particular, 3D data acquisition techniques

make it possible to acquire one 3D object with detailed shape information in

a short time. Accordingly, this led to the development of techniques including

processing, recognition, categorization, and retrieval for such 3D objects. In

this thesis, we studied 3D object retrieval and 3D facial expression recognition

within this field.

3D object retrieval is to search for 3D object(s) meeting some specific re-

quirements within a database or the World Wide Web. In this thesis, a novel

feature which is called object flexibility, is proposed at a point of a 3D object

to describe how the neighborhood of this point is massively connected to the

object. This feature is stable to the deformation of objects’ articulations, in

addition to commonly concerned linear transforms, i.e., translation, scale, and

rotation. A shape descriptor is obtained based on this feature using the bag-

of-words model. As an application, the descriptor is used to perform 3D object

retrieval. Extensive experiments demonstrate its superiority over a variety of

existing 3D shape descriptors in the retrieval of articulated objects, as well as

its enhancement of other shape descriptors to retrieve generic 3D objects.

Facial expression recognition has many applications in multimedia process-

ing, and the development of 3D data acquisition techniques make it possible

to identify expressions using 3D shape information. We propose an automatic
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facial expression recognition approach based on a single 3D face. The shape

of an expressional 3D face is approximated as the sum of two parts, a basic

facial shape component (BFSC) and an expressional shape component (ESC).

The BFSC represents the basic face structure and neutral-style shape and the

ESC contains shape changes caused by facial expressions. To separate the

BFSC and ESC, our method firstly builds a reference face for each input 3D

non-neutral face by a learning method, which well represents the basic facial

shape. Then, based on the BFSC and the original expressional face, a facial

expression descriptor is designed. The surface depth changes are considered in

the descriptor. Finally, the descriptor is input into an Support Vector Machine

(SVM) to recognize the type of expression. Unlike previous methods which rec-

ognize a facial expression with the help of manually labeled key points and/or

a neutral face, our method works on a single 3D face without any manual

assistance. Extensive experiments are carried out on the BU-3DFE database

and comparisons with existing methods are conducted. Experimental results

show the effectiveness of our method.
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Chapter 1

Introduction

Digital multimedia is gaining prominence on both the Internet and corpo-

rate data warehouses. One type of information becoming popular recently is

the three-dimensional models. The advancement of modeling, digitizing, and

visualizing techniques for three-dimensional (3D) shapes has led to a plenty

number of 3D models, from computer-aided design (CAD) to complex protein

and molecule representations. As a result, many research efforts have been

attracted to deal with problems raised during this upcoming wave. This the-

sis shows our initial attempt on 3D object retrieval and 3D facial expression

recognition.

In this chapter, I will introduce three kinds of representations of 3D objects

which are the target and inputs of our algorithms, and then introduce the

structure of this thesis about 3D object retrieval and 3D facial expression

recognition.

1.1 3D Object Representation

The underlying representation of a 3D object can be with various forms. Al-

though currently some 3D scanner is able to capture both shape and appear-

ance of objects or scenes, we focus on only the geometric information here.

Polygon mesh, voxel, and range image are the most widely used ones for 3D
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(a) Polygon Mesh Representation (b) Voxel Representation (c) Range Image Reopresentation

Figure 1.1: A 3D object can be represented in different forms, like (a)polygon
mesh representation, (b)voxel representation, and (c)range image representa-
tion.

object representations (see Figure 1.1).

1.1.1 Polygon Mesh

Figure 1.1(a) shows one polygon mesh modeled object (an ant). A polygon

mesh is a collection of vertices, edges, and faces that defines the shape of a

polyhedral object. It explicitly represent the surface of an object, but leaves

the volume implicitly modeled [8]. Polygons are able to model an object with

various tesselation, and are particularly efficient in representing simple 3D

structures with lots of empty or homogeneously-filled space. The study of

polygon meshes is a large sub-field of computer graphics and geometric mod-

eling which is out of the scope of this thesis. We refer readers to [32, 39, 35, 9]

for recent research progress about polygon mesh.
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1.1.2 Voxel

The key for computer programs to look for 3D objects is the voxel, which is a

volume element representing a set of (graphical) values on a regular grid, like

color, density, etc., in 3D space. Since voxels are good at representing regularly

sampled spaces that are non-homogeneously filled (comparing to polygon mesh

representation in section 1.1.1), voxels are frenquently used in the visualization

and analysis of medical and scientific data [8]. A voxel model of a horse with

low resolution is shown in Figure 1.1(b).

1.1.3 Range Image

The third type of 3D object representation is to use the range image (see

Figure 1.1 for example). Rang image can be seen as the raw data of the

output of a range camera (e.g. a 3D scanner). It is a 2D image showing the

distance to points in a scene from a specific point, normally associated with

some type of sensor device. The resulting image, the range image, has pixel

values which correspond to the distance, e.g., brighter values mean shorter

distance, or vice versa. If the sensor which is used to produce the range image

is properly calibrated, the pixel values can be given directly in physical units

such as meters [8]. Note that due to different scanning techniques adopted by

range cameras, range image may be a polygon mesh or voxel based volume.

The above three models are the main representations of a 3D object cur-

rently. The different characteristics lead to various challenges. Our algorithms

are able to deal with the first two categories, and are easy to be modified to

the third one.
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1.2 Content-Based 3D Object Retrieval

Since an increasing amount of 3D information is making its way onto the

Internet and into corporate databases, users need ways to store, index, and

search this information efficiently. Typical text-based searching approaches are

not suitable for this, because most 3D objects are not labeled with keywords.

As a result, the demand is to retrieve based on the object’s own content. We

will simply put it as “3D object retrieval” in the left part of the thesis.

Traditionally, a 3D object retrieval algorithm consists of canonical coor-

dinate normalization and preprocessing, feature extraction, similarity match,

query formulation and user interface, and performance evaluation, most of

which can be found in the next chapter for detailed description.

Chapter 3 is about our algorithm on this topic. We find that most existing

methods are only designed for generic objects but not suitable for articulated

ones. Therefore, we propose to extract shape descriptor based object flexibil-

ity, which is particularly useful for retrieving objects with articulated parts.

Besides its stability to articulated parts, flexibility is also invariant to object’s

position, orientation and size. We find that it is also a good supplement for

generic 3D object retrieval. We will describe detailed motivation and definition

of flexibility, and present extensive experiments in this chapter.

We make some trial in chapter 4 in improving the performance of 3D object

retrieval by incorporating extra information from a set of referent objects. A

very weak prior, whether an object is man-made or natural , is found a great

enhancement to the retrieval results. Therefore, we introduce a 3D object

classifier to learn the prior from the referent set. Some post-processing of the

classifier is also proposed in this chapter.
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1.3 3D Facial Expression Recognition

Anther work in this thesis is about 3D object recognition, in particular, 3D

facial expression recognition. Facial expression recognition has a wide appli-

cation in human-computer interface (HCI) community [24], face recognition

[41], and many other multimedia systems. Common concerns like illumination

and pose on appearance based methods, have no affection to 3D face models.

Therefore, 3D facial expression recognition is supposed to have better results

than appearance based methods.

In chapter 5, an automatic 3D facial expression recognition algorithm is

developed. To the best of our knowledge, it is the first automatic system

without any manually labeling process on this topic. The system consists of a

posture alignment step, a learning method to synthesize the basic facial shape

component, a feature extraction step, and an expression classifier to indicate

the facial expression.

Our main contributions are summarized as below:

• A comprehensive survey on 3D object retrieval is made in chapter 2. We

emphasize not only existing algorithms but also the publicly available

research resources, e.g., databases and experimental systems.

• We propose a novel shape descriptor for retrieving objects with articu-

lated parts, as well as its combination method to boost generic 3D object

retrieval [21].

• We demonstrate a favorable effect of referent objects on 3D object re-

trieval in chapter 4. Some work will follow this promising experimental

result.

• An automatic facial expression recognition system is developed [20]. To
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the best our knowledge, this is the first one which do not relies on manu-

ally labeling process. We also proposed a learning method to synthesize

the basic facial shape component of an expressional face.



Chapter 2

3D Object Retrieval

In this chapter, a conceptual 3D object retrieval framework and some im-

portant modules are introduced. During the introduction, some related work

will be covered. After that, we will review some publicly available research

resources (e.g., experimental 3D search engine and public databases). The

closure of this chapter will summarize some challenges for 3D object retrieval.

2.1 A Conceptual Framework for 3D Object

Retrieval

3D object retrieval is to retrieve object(s) from a database or the Internet meet-

ing some requirements, which often bases on the similarities between objects

and the query. Figure 2.1 shows a conceptual framework for a integrated 3D

object retrieval system. A user is allowed to submit a query in different ways.

After some preprocessing like canonical coordinate normalization, smooth or

simplification, shape descriptors are extracted from the query. This descriptor

is compared to those stored in the database, which have been extracted off

line, based on some matching measures. To speed up this retrieval process, an

indexing scheme is often needed for large databases. Then objects are returned

as the retrieval result ordered in their similarities to the query. Due to the di-

vergence of the 2D device screen and the 3D object, some special visualization

7
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Figure 2.1: A conceptual framework for 3D object retrieval [46].

processes are needed which are quite different from the traditional multimedia

(e.g., text or image) retrieval.

Important modules in this framework will be covered in following, including

query formulation and user interface, canonical coordinate normalization, some

feature extraction methods, similarity match, and performance evaluation.

2.1.1 Query Formulation and User Interface

A true 3D search system ought to offer convenient query formulation method

and friendly user interface. A convenient way of query formulation becomes

much more important than other multimedia retrieval tasks (e.g., text or im-

age retrieval), because currently there are no proper tools for a common user
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to design a 3D object to be used as the query. Querying by sketching and

Querying by example are the two main ways for query formulation.

Figure 2.2 shows two experimental 3D object retrieval systems. The 3D

Model Search Engine at Princeton University [6, 28] allows users to formulate

a query by sketching three 2D views of a 3D object, sketching a 3D frame of an

object, or uploading a file containing 3D object(s), while the 3D Search Engine

at the Informatics and Telematics Institute Greece [3] is a typical querying-

by-example system. Objects are pre-cataloged and a user can select one from

them as the query. In this thesis, our work is currently based on the querying-

by-example method.

2.1.2 Canonical Coordinate Normalization

A 3D object can be with various orientation, scale, and position. Some shape

descriptors are invariant to translation, scaling, or rotation, while others are

covariant with such linear transformations. A normalization step is thus nec-

essary for the latter case, to transform objects to be compared into the same

canonical coordinate frame. Otherwise, the similarity between two analogical

objects may be very small if they are with different orientations.

By translating the mass center to the origin and scaling the maximal ra-

dius to unit length, objects can be easily normalized to similar position and

scale. Principal Component Analysis (PCA) is the most widely used way to

rotate an object into canonical orientations. Vranić modified PCA to analyze

infinite number of points represented by a union of triangles [49]. However,

misalignment is common when two similar shapes but with different point dis-

tributions. Tedjokusumo and Leow proposed to use bilateral symmetry planes

to normalize and align 3D shapes in [47] and showed its superiority over PCA.
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(a)

 (b)

Figure 2.2: Experimental 3D object retrieval systems: (a) 3D Model Search
Engine at Princeton University [6, 28], which allows user to formulate a query
by sketching or uploading a 3D object; (b) 3D Search Engine at the Informatics
and Telematics Institute, Greece [3], a typical querying-by-example system
that allows users to select queries from cataloged objects.
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2.1.3 Representations of 3D Objects

A key issue is the type of shape representation(s) that a shape retrieval sys-

tem accepts [46]. An ideal 3D object representation is not only stable to linear

transformation (i.e., translation, scale, and rotation) and non-linear deforma-

tion (e.g., articulation and degeneration), but also supposed to be a fair bal-

ance between expressiveness of a shape and robustness across different shapes

of the same class. In other words, the representations of different 3D objects of

the same class ought to be similar, and those of objects from different classes

should be diversified.

Amount of work can be found on the representation of 3D objects, and

authors of survey papers categorize them into different types [46, 12, 52]. We

refer readers to these survey papers for a thorough understanding of existing

methods. In this thesis, we would like to list some sort of them and will

compare their effectiveness in the following chapter. They are,

• point distribution based D2 [31] and AAD (Absolute-Angle Distance

histogram) [29];

• image based LFD (LightField Descriptor) [15], DBD (Depth Buffer De-

scriptor) [49], and SIL (Silhouette-based descriptor) [49];

• volume or surface based EDT (negatively exponentiated Euclidean Dis-

tance Transform) [27] and RSH (Ray-based with Spherical Harmonic

representation) [49].

With these representations, the 3D object retrieval process is carried out by

calculating the distances or similarities between the query and objects in the

database, and then ranking portions of the database in terms of the similarities

to the query. Since most shape representations can be regarded as a feature

vector or histogram, the similarity measures are often Lp norms, χ2 distance,
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or symmetric KL divergence. Graph match is also applied for some topological

representation of an object.

2.1.4 Performance Evaluation

It is necessary to define some performance evaluations to compare the effec-

tiveness of different 3D object retrieval algorithms. Suppose that we have a

test set St and each object Qi ∈ St (i = 1, 2, · · · , N) is used as the query. The

retrieved objects (Oi1, Oi2, · · · ) are ranked by their similarities to Qi. Objects

in the database that belong to the same class as Qi constitute a set of Ci. The

performance of a retrieval algorithm is then evaluated by the average results

of all the queries.

In this thesis, a Precision-Recall plot and some overall scores [40] are taken

to assess different retrieval algorithms.

Precision-Recall Plot describes the relationship between precision Pi (ver-

tical axis) and recall Ri (horizontal axis) for query Qi in the ranked list

(Oi1, Oi2, · · · ), where

Pi(k) =
|{Oij|Oij ∈ Ci, j = 1, 2, · · · , k}|

k
, (2.1)

Ri(k) =
|{Oij|Oij ∈ Ci, j = 1, 2, · · · , k}|

|Ci| . (2.2)

Based on the above definition, we can obtain a sequence of precisions

and recalls by increasing k, and hence we can draw a Precision-Recall

plot for each query Qi. Usually the average plot of all queries in St is

reported as the performance measure of an algorithm. An ideal result

would generate a horizontal line at P = 1.

Nearest Neighbor is the percentage of the first objects in the ranking lists

that belong to the same class as the queries:

NN =
|{Oi1|Oi1 ∈ Ci, i = 1, 2, · · · N}|

|St| . (2.3)
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Obviously, the ideal score is 100%, the range of NN is [0, 1], and the

higher NN is the better the results are.

First Tier of a query Qi is defined as the percentage of objects in Qi’s class

Ci that appear within the top k matches:

FTi =
|{Oij|Oij ∈ Ci, j = 1, 2, · · · , k}|

k
, (2.4)

FT =
1

N
·

N∑
i=1

FTi. (2.5)

where k depends on the size of the class. If Ci contains Qi, k = |Ci|− 1;

otherwise k = |Ci|. We can see that FT is also within the range of [0, 1]

and the higher the better.

Second Tier of a query Qi is defined in the same way as Equation 2.4. The

only difference is that k = 2 ∗ (|Ci| − 1) when Qi is in Ci, and k = 2 ∗Ci

when Qi is not included by Ci.

E-Measure is a composite measure of precision and recall for a fixed number

k of retrieved results (k = 32 in this thesis):

E =
1

1/P + 1/R
. (2.6)

It assumes that a user is more interested in the first page of query results

than in later pages. The maximal value of E is 1 and the higher the

better.

Discounted Cumulative Gain is proposed in [26] and widely used in infor-

mation retrieval as an evaluation criterion. Its intuition is that the re-

trieved relevant results are more important near the front of the list than

those at the later. The specific definition is by firstly convert the retrieved

object list (Oi1, Oi2, · · · ) to a boolean sequence Gi = (Gi1, Gi2, · · · ),
where Gij = 1 if Oij ∈ Ci and Gij = 0 otherwise. The Discounted
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Cumulative Gain (DCG) series is then defined based on the boolean list

G,

DCGij =





Gi1 j = 1,

DCGij−1 + Gij/ log2(i) j ≥ 2.
(2.7)

The DCG is then defined as below,

DCGi =
DCGiM

1 +
∑|Ci|

j=2
1

log2(j)

, (2.8)

where M is the length of the list G. The denominator denotes the perfect

DCGi value when all objects that are within the same class Ci as Qi

are ranked at the top |Ci| positions. Note that we also use the average

value of all queries’ DCGi (i = 1, 2, · · · , N) as the final evaluation score.

Higher DCG indicates a better retrieval algorithm.

The Precision-Recall plot provides a visualized comparison of different al-

gorithms. Near Neighbor predicts how well a retrieval algorithm in retrieving

a most similar object to the query. First Tier, Second Tier, and E-Measure

evaluate the correct results near the front of the retrieved and ranked list, while

DCG assesses the whole list with some discounted scheme. These performance

measures provide a complete assess of a retrieval algorithm with respect to

different emphasis.

2.2 Public Databases

Some 3D shape benchmarks have been released to promote standard compar-

ison of different competitive methods. Based on the characteristics of objects

they contain, we categorize them into databases of generic, articulated, and

domain-specific shape models.
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2.2.1 Databases of Generic 3D Objects

Among all the available databases, those containing generic objects are the

most influent ones. By generic objects we mean that in these databases there

are both natural and man-made objects, both rigid and articulated objects,

both whole and partial objects, etc. Besides, these objects are often with

different “defined levels”—some objects are strict closed meshes (watertight)

while others may be not; some objects are represented very accurately while

others may be represented by very coarse tessellation.

Princeton Shape Benchmark (PSB) [40] is a representative one of such type

of databases. It contains a database of 3D polygonal models collected from

the World Wide Web. For each 3D model, there is an Object File Format

(.off) file with the polygonal geometry of the model, a model information file

(e.g., the URL from where it came), and a JPEG image file with a thumbnail

view of the model. It contains 1,814 models in total and is declared that more

models would be added in the future. These models are divided into training

and test sets equally, each with 907 models. The training set is classified into

90 classes in the base classification, while the test set consists of 92 classes. An

interesting issue is that PSB also provides some coarser classification criteria.

For example, in the third level of categorization, the objects are categorized

as either natural or man-made class. To the best of our knowledge, we find

no work probing the coarser classification criteria. We have carried out some

experiments about this issue which will be reported in the next chapter.

There are also some other generic databases, like NTU 3D Model Bench-

mark [15], CCCC database [48], a database used in [5], and the ITI database

[3].
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Figure 2.3: Objects in the McGill 3D Shape Benchmark with articulated parts.

2.2.2 A Database of Articulated Objects

Considering that the techniques to deal with rigid objects and articulated ones

may be quite different, a database called McGill 3D Shape Benchmark [54] is

designed for articulated 3D shape models on purpose. It is composed of 254

models lying in 10 categories, each with about 20 to 30 objects. Both voxel and

polygon mesh forms are provided, and the meshes are all watertight. Figure

2.3 shows some example objects with articulated parts in the database. Note

that another database full of objects with no or minor articulated parts, which

may be regard as the generic database under our categorizing criterion in this

thesis, is also released along with the articulated one.

We have proposed a novel shape descriptor particularly suitable for artic-

ulated object match [21] and will present the details in the next chapter. Our

algorithm is also able to boost existing algorithm in retrieving generic objects.

2.2.3 Domain-Specific Databases

There are also some 3D databases designed for applications in some specific

domains, such as CAD [37] and biological data [10]. An engineering shape
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benchmark has been provided at Purdue University [23]. These databases are

provided to facilitate research for some more specific problems and hence have

their own characteristics on both the problems themselves and corresponding

methods evolved.

2.2.4 Data Sets for the Shrec Contest

There has been an annual contest, the 3D Shape Retrieval Contest (Shrec)

since 2007 [4]. It is organized within the AIMSHAPE project and usually in

conjunction with the Eurographics Workshop on 3D Object Retrieval. The 3D

object retrieval problem is studied in a finer level in this contest. It divides

the problem into different tracks like Protein models, non-rigid shapes, range

scans, CAD models, watertight models, and even a track of 3D face models.

Besides the above mentioned databases, the contest also contributes its own

data sets to facilitate related research.

2.3 Experimental Systems

After years of development, some experimental 3D search engines have been

released:

• 3D Model Search Engine at Princeton University [6, 28];

• 3D Model Retrieval System built in National Taiwai University [1, 14];

• 3D Model Retrieval System at the University of Konstanz [2, 48];

• 3D Search Engine at the Informatics and Telematics Institute, Greece

[3];

• 3D Shape Retrieval Engine [5, 45].
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All these systems are developed experimentally based on one or more publicly

available databases with a limit number of objects. Though they are in their

infancies, it is promising for true applications where real-time processing and

friendly user interface are required.

2.4 Challenges in 3D Object Retrieval

As a new type of multimedia information representation, 3D objects have

their own characteristics and hence leads to some new challenges to the store,

retrieval, analysis, and visualization. Comparing to other multimedia retrieval

tasks, a 3D object retrieval system may have more challenges to overcome.

• Similar to other feature extraction criteria for traditional multimedia,

shape descriptors ought to be as discriminative as possible. A good 3D

shape descriptor should be expressive for a particular object, stable for a

class of similar objects, and distinctive for objects of different categories.

• A 3D object retrieval system should be robust to objects’ linear and

non-linear transformation, deformation, and degeneration. This may

be fulfilled by either canonical coordinate normalization, or some shape

descriptors that are invariant to these influences, or both.

• Unlike text or image retrieval, a user-friendly query formulation and

interface become important for a 3D object retrieval system, because

users are often short of such data as query, and it is difficult for users to

create a 3D object using current software and tools.

• Diversified representation of 3D objects may impede the applicable scope

of a system. As introduced in the previous chapter, 3D objects may be

represented by voxel, mesh, and range data. Some of them may also

include appearance information in addition to the shapes. It is not a

trivial task for a system to deal with such data simultaneously.
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• Various tessellations or resolutions of 3D objects result in different levels

of details of 3D objects. Descriptors that are able to describe an object

in multi-resolution are promising for true application.

• “Mesh soup” is a popular and convenient way to represent and store

an object. However, whether a mesh is closed or not may cause large

changes of a shape descriptor. In other words, shape descriptors should

not be restrictive to some particular structures of the mesh soup.

• Efficient descriptor extraction, compact representation, and real-time in-

dexing are always what a retrieval system must satisfy.



Chapter 3

Boosting 3D Object Retrieval

by Object Flexibility

This chapter elaborates our proposed 3D object flexibility feature and a shape

descriptor based on flexibility using the bag-of-words model. We will show that

this descriptor is stable to the deformation of objects’ articulations, in addition

to commonly concerned linear transforms, i.e., translation, scale, and rotation.

Experiments demonstrate its superiority over a variety of existing 3D shape

descriptors in the retrieval of articulated objects, as well as its enhancement

of other shape descriptors to retrieve generic 3D objects.

3.1 Related Work

3D data are now widely recognized as the upcoming wave of digital media. 3D

object retrieval rapidly becomes a key issue in this new multimedia content

processing, and attracts more and more research interests. Some 3D object

benchmarks and experimental retrieval systems have been made available, such

as the Princeton shape benchmark and its associated search engine [40], and

the NTU 3D model benchmark and its corresponding retrieval system [15]. The

reader is referred to [46, 12, 52] for a comprehensive survey of this research.

20
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The shape of a 3D object can be with arbitrary scale, location, and orienta-

tion. For generic 3D object retrieval, a retrieval method has to either perform

a pose normalization process or use shape descriptors that are inherently in-

variant to linear transformations (translation, rotation, and scale). Much work

has been presented in solving these problems so far. Shilane et al. compared

twelve shape descriptors in [40]. Bimbo and Pala included five descriptors in

their experimental analysis, which fall into point distribution based, volume

based, and image based categories [16].

On the other hand, less attention has been paid to the problem of non-linear

shape deformations caused by objects’ articulations. Zhang et al. carried out

the first work of 3D articulated object retrieval using medial surfaces and their

graph spectra, and provided a 3D articulated object database, the McGill

3D shape benchmark [54]. The main problem in the graph-based method

is that it is sensitive to topological changes which are common in generic

3D models. Jain and Zhang tried to achieve articulation invariance in [25]

by using the spectral embedding of an affinity matrix. Ion et al. used the

continuous eccentricity transform to make their method insensitive to shape

articulations [22]. However, these two methods [25, 22] are sensitive to objects

with disconnected parts or outliers.

In this chapter, we propose a novel feature, called object flexibility, at a

point of a 3D object to describe how the neighborhood of this point is mas-

sively connected to the object. This feature is stable to both linear transfor-

mations and non-linear deformations caused by objects’ articulations. Based

on this object flexibility, we propose a new shape descriptor for 3D object re-

trieval. Extensive experiments show that it outperforms a variety of existing

shape descriptors in the retrieval of articulated 3D objects, which are often

natural objects like animals, plants, and humans. Besides, combined with ex-

isting shape descriptors, it also helps to obtain better performance of retrieving

generic 3D objects.
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Figure 3.1: Illustration of the flexibility.

3.2 Object Flexibility

In this section, we first define the object flexibility mathematically, and then

we discuss how to compute it and to form the final shape descriptor based on

it.

3.2.1 Definition

Definition 3.1. Given a radius r, let Cp,r ⊂ O be the set of points within a

sphere S3
r centered at a point p of a 3D object O. The object flexibility at p is

defined as:

ρr(p) =
Eig2(X

T X)

r
, (3.1)

where X is the data matrix consisting of the 3D coordinates of all the points

in Cp,r, one point per row, and Eig2(·) is a function that returns the second

largest eigenvalue of a square matrix.

Consider a small part enclosed by S3
r , centered at a point p on the leg of an

ant in Fig. 3.1. Suppose that the three dimensions denoted by d1, d2, and d3



Chapter 3 Boosting 3D Object Retrieval by Object Flexibility 23

2

4

6

8

10

12

14

x 10
−3

(a) (c)(b)

Figure 3.2: (a) A 3D model of an ant. (b) Sampled points of the ant. (c) The
flexibility distribution on the ant.

are arranged as d1 ≥ d2 ≥ d3 according to the variance on each dimension. In

the definition, we estimate the normalized variance in the direction d2, which

can be a potential measure about how the local part (a segment of the ant’s

leg) is massively connected to the object (the ant), or how easily that part of

the object can be bent. The smaller ρr(p) is, the more tenuous that part is

with more “bending ability”.

Note that we do not use the variance in d1 because it tends to be constant

for different parts of an object when r is fixed. We also discard the third

eigenvalue since it may degenerate to zero when the points in Cp,r lie in a

plane.

3.2.2 Computation of the Flexibility

Before computing the flexibility, we need to determine the radius r and the

points of an object where their flexibilities are computed.

Since the flexibility describes local shape characteristics, we have to select

enough points of a 3D model to obtain a complete shape description. For an

object represented by voxels, we select all its surface points, each of which has

less than 13 non-zero voxels among its 26 neighbor voxels. In our experiments,
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590 surface points of a 3D model are left on average after filtering out inner

points in the McGill database [54], where each model is represented by 1283

voxels. For an object represented by meshes in the Princeton shape benchmark

[40], 2000 surface points are sampled using a scheme presented in [31] in the

first round, and then 500 points are randomly selected from them. We use all

the 2000 points to compute the flexibilities of the 500 points. One example of

the sampled points from a mesh model is shown in Fig. 3.2(b).

Next, a proper radius r is determined for each selected point. It is easy to

see that

lim
r→0

ρr(p) = 0, lim
r→∞

ρr(p) = 0, (3.2)

for p ∈ O, which further result in

lim
r→0

η(r) = 0, lim
r→∞

η(r) = 0, (3.3)

where

η(r) = V arp∈O(ρr(p)). (3.4)

Therefore, there exists a r∗ such that the variance η(r∗) is maximized. The

goal of maximizing η(r) is to obtain the richest descriptor on flexibility for a

given 3D model.

Fig. 3.3(a) shows the flexibility variances η(r) versus different radii, 0.1Ri,

0.2Ri, · · · , 1.0Ri, 1 ≤ i ≤ 10, for 10 randomly selected objects (dashed lines),

where Ri is the radius of the i-th 3D model defined as the average distance

from all the surface points to the center of mass. The solid curve in Fig.

3.3(a) denotes the average variances of 100 randomly selected objects. This

figure shows that the maxima of the curves mainly fall into a relatively small

range of r, indicating that the discriminative ability of ρr(p) is insensitive

to the choice of r. In practice, one can compute the flexibility of a point p

using some r ∈ [0.2R, 0.4R]. Fig. 3.2(c) shows the flexibility distribution of an

ant computed using r = 0.3R. Alternatively, we can define a more elaborate
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Figure 3.3: (a) Flexibility variance versus radius. (b) DCG versus size of the
codebook.

measure to explore the flexibility characteristic thoroughly by using a series of

radii to form a flexibility vector at a point. We discuss it in the next section.

3.3 A Flexibility Descriptor for 3D Object Re-

trieval

Let r = [r1, r2, · · · , rK ]T , r1 < r2 < · · · < rK , denote the radii of a series of

concentric spheres centered at some point p. A flexibility vector ρr(p) at p is

then obtained by

ρr(p) = [ρr1(p), ρr2(p), · · · , ρrK
(p)]T . (3.5)

Note that a 3D model generates a number of flexibility vectors and two models

usually have different numbers of such vectors. To organize these vectors into

a global shape descriptor, the bag-of-words model [18] is adopted here. We

use the k-means algorithm to cluster the flexibility vectors from half of the

objects in a database to N clusters, the centers of which compose a codebook

{c1, c2, · · · , cN}. Each flexibility vector is then represented by a codeword

ci if it is closest to ci, and a 3D model is described by a histogram over
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{c1, c2, · · · , cN} obtained by counting the codewords representing all the flex-

ibility vectors of the 3D model. Finally, the object flexibility descriptor is

formed by normalizing the histogram.

To measure the dissimilarity between two flexibility descriptors P and Q,

we use the symmetric Kullback–Leibler divergence defined as

disFl(P ||Q) = DKL(P ||Q) + DKL(Q||P ), (3.6)

where

DKL(P ||Q) =
N∑

i=1

P (i) log
P (i)

Q(i)
. (3.7)

With this descriptor, we can conduct 3D object retrieval by computing the

dissimilarities between a query and every object in a database. Using every

object as the query in the McGill database [54] and the Princeton training

set [40], Fig. 3.3(b) shows the average retrieval performance (evaluated by

the discounted cumulative gain (DCG) [40]) of the flexibility descriptor. We

can see that DCG remains consistent in quite a wide range of the size of the

codebook. We choose N = 10 for the McGill benchmark and N = 60 for the

Princeton benchmark in our experiments.

3.4 Enhancing Existing Methods

The flexibility descriptor performs very well in retrieving articulated 3D objects

(see Section 3.5). In addition, it can enhance existing shape descriptors when

combined with them to retrieve generic 3D objects. A majority of existing

shape descriptors represent a 3D shape without explicit geometric meanings,

while the flexibility descriptor measures a particular geometric characteristic,

the flexibility. So a more complete shape description of a 3D model can be

obtained by combining it with other descriptors.

A natural way to combine two shape dissimilarity measures is

dis = α·dis
′
Fl + (1− α)·dis

′
Other, (3.8)
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FD LFD SHD AAD D2
FT 0.560 0.508 0.478 0.439 0.419
ST 0.720 0.697 0.641 0.624 0.605
EM 0.530 0.497 0.464 0.433 0.414
DCG 0.844 0.831 0.804 0.768 0.764

Table 3.1: Retrieval performance of different shape descriptors for retrieving
3D articulated objects.

where dis
′
Fl is a normalized version of disFl defined in (3.6) such that it is in

[0, 1], dis
′
Other is some other dissimilarity measure, also normalized into [0, 1],

and α is a weighting factor to balance the two measures with 0 ≤ α ≤ 1.

3.5 Experiments

Three groups of experiments are carried out, each with emphasis upon differ-

ent requirements for a shape descriptor. In these experiments, we compare our

flexibility descriptor (FD) with four other shape descriptors, the source codes

or executable programs of which have been provided by the authors. They

are the point distribution based D2 [31] and one of its extended descriptors,

the mutual absolute-angle distance histogram (AAD) [30], the volume based

spherical harmonic descriptor (SHD) [27], and the image based light field de-

scriptor (LFD) [15]. The retrieval results are quantified using the Princeton

shape benchmark (PSB) evaluation tools of first tier (FT), second tier (ST),

e-measure (EM), discounted cumulative gain (DCG), and the precision-recall

plot [40].

3.5.1 Retrieving Articulated Objects

The first group of experiments is designed to measure the robustness of the

shape descriptors to nonlinear shape transformations caused by objects’ artic-

ulations, with the McGill articulated shape database. This database consists

of 255 models in 10 classes. Every model is used as the query. Table 3.1 shows
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Figure 3.4: Precision-recall plots of different shape descriptors for retrieving
3D articulated objects.

the average retrieval results of the five descriptors evaluated by FT, ST, EM,

and DCG. Fig. 3.4 is the precision-recall plots of the five descriptors. We can

see that our FD outperforms the other descriptors.

3.5.2 Retrieving Generic Objects

In the second group of experiments, we use the whole McGill shape bench-

mark (MSB) which includes the 255 articulated objects used in the previous

experiments and the other 200 objects with few or no articulations. Our FD

itself does not perform very well in retrieving such generic objects. However,

significant improvements can be achieved when it is combined with other de-

scriptors using (3.8) (α = 0.5 is chosen here). Fig. 3.5 shows the retrieval

results of LFD, SHD, AAD, and D2 with and without our FD combined, eval-

uated by FT, ST, EM, and DCG. With the improved performance, all the four

shape descriptors are enhanced by our FD under different evaluations. The

improvements are due to the fact that the four shape descriptors describe 3D

models from a general viewpoint only, without considering particular geome-

try properties, but the fusion of them with our FD provides a more complete
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description.

The reader may wonder if the combination of two of the previous descriptors

can also give similar or even better results than the combination of our FD with

one of the previous. Since LFD works best among the previous four descriptors

in our experiments as well as in [40] and [16], we use it as the baseline and

combine each of the other descriptors with it. The retrieval results are given in

Fig. 3.6(a), which are the precision-improvement-recall plots obtained from the

precision-recall plots by subtracting the precision of LFD from the precisions

of the four combinations. Fig. 3.6(a) indicates that our FD with LFD not

only outperforms the other combinations, but also has improvement over the

original LFD in a wide range of the recall.

3.5.3 Experiments on Larger Databases

The third group of experiments is conducted on the Princeton shape bench-

mark (PSB) training set [40], which contains 907 models in 90 classes. The

majority of the models are rigid, man-made objects without much requirements

for a shape descriptor to be articulation invariant. Even though it seems that

the articulation invariant property of our FD is not necessary in such a case, it

is still able to enhance the other shape descriptors to some extent. Fig. 3.6(b)

shows the precision-improvement-recall plots by fusing FD, SHD, AAD, or D2

with LFD tested on the PSB training set. Obviously, LFD combined with FD

improves the performance of LFD itself.

More specifically, there are improvements in 72 classes in the PSB training

set where LFD with FD performs better than LFD itself. Among them, 17

classes are with more than 5% improvements. These improvements mainly

happen to natural objects such as tree, apatosaurus, and face, and objects

with large intra-class variances such as city, shoe, rectangular, roman building,

and antique car.
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Figure 3.5: Retrieval performance of different shape descriptors with and with-
out FD on MSB.
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Figure 3.6: Precision improvement comparison when FD, SHD, AAD, or D2
is combined with LFD on MSB (a) and on the PSB training set (b).
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The extensive experiments demonstrate that our flexibility descriptor is

suited for retrieving articulated objects, especially natural objects. For generic

object retrieval, it provides a favorable complementary to other shape descrip-

tors.

3.5.4 Comparison of Times for Feature Extraction

The feature extraction times of FD, LFD, SHD, AAD, and D2 are about 1.12s,

2.69s, 2.25s, 0.46s, and 0.23s, respectively, on average for each object in the

PSB training set. The programs are run on an Intel Pentium(R) 3.20GHz

CPU with 2 GB RAM.

3.6 Conclusions & Analysis

We have proposed a new feature, called object flexibility, to measure local

shape characteristics of an object about how a local part is massively connected

to the object. Based on this feature, a new shape descriptor is obtained, which

is stable to shape deformations caused by articulations. Extensive experiments

show that this shape descriptor outperforms four previous popular shape de-

scriptors in retrieving articulated objects. For generic 3D object retrieval, it

can be combined with them to obtain better performance.



Chapter 4

3D Object Retrieval with

Referent Objects

The typical 3D object retrieval framework as shown in chapter 2 assumes no

prior knowledge about both the database and the query, but in practice, a

relatively size-fixed database can be organized into different clusters, and a

query is convenient to be tagged with some labels by its user. This chapter

shows some performance improvements by using this prior information, and a

learning method to infer priors when they are not available.

4.1 3D Object Retrieval with Prior

Traditionally, 3D object retrieval is to compare a query to each object in

the database and return a sorted list of objects according to the distances or

similarities between them and the query. In other words, the distance d(Q,Oi)

between the query Q and an object Oi in the database is obtained by defining

some metric on them. Therefore, object descriptor and the metric defined on

them are the key factors influencing the final retrieval results.

However, we find that the performance can be improved significantly with

a simple modification to this framework based on some prior about the objects.

The motivation is that if some objects distinguish from the query quite a lot,

33
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NN FT ST EM DCG
(EDT, L1) 0.60 0.33 0.44 0.24 0.61

(EDT, Prior, L1) 0.64 0.38 0.51 0.28 0.65

Table 4.1: Performance evaluation of EDT on PSB training set with and with-
out prior (the second and third row respectively).

they are likely not what a querier wants and ought to be ranked in the rear of

the retrieval list. We demonstrate this by using the prior of whether the query

and the object to be compared are natural or man-made. While we compare

the query Q and an object Oi in the database, their labels of “natural” or

“man-made” are firstly examined before going to the next step of calculating

the distance between them. If they are with the same tag, the distance is

computed using pre-defined method; and if they are with different labels which

means that the query and the object are quite different, the distance is simply

set as infinity. Thus the distance measure of d(Q,Oi) is modified as

d(Q,Oi, P rior) =





d(Q,Oi) if Pr(Q) = Pr(Oi),

∞ if Pr(Q) 6= Pr(Oi),

(4.1)

where Pr(·) is the label of “natural” or “man-made” of an object here.

With such weak prior, a distinct improvement can be found in our exper-

iment on the PSB training set using EDT descriptor and L1 metric as the

distance measure. The first row in Table 4.1 are five kinds of performance

evaluations (we refer readers to [40] for detailed definitions), and the second

and third rows are retrieval performances of EDT with and without prior re-

spectively. Figure 4.1 plots the recall-precision curves. We can see that by

using the weak prior, one can reach much better retrieval results.
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Figure 4.1: Precision (y axis) versus recall (x axis) on PSB training set.

4.2 3D Object Retrieval with Referent Ob-

jects

Note that the prior used in section 4.1 is provided when the PSB is released,

but most objects are not with such labels of “natural” or “man-made” in

real applications. We consider two scenarios here. One is that objects in the

database are classified into natural or man-made ones, while the label of the

query is not known. The other is that both objects to be retrieved and the

query are not classified. The former scenario is suitable for applications where

the size of the database is relatively fixed and hence some pre-processing to

organize the objects in the database is reasonable, but when objects in the

database are not classified, the latter scenario applies.

Although in both cases the advantage of object prior can not be used

directly, we introduce a 3D object classification module to automatically tag

labels to objects to make up this problem.
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Figure 4.2: Performance comparison of descriptors for natural and man-made
3D object classification.

4.2.1 Natural and Man-made 3D Object Classification

We introduce a 3D object classifier to serve as the prior inferring module in the

following retrieval algorithm. Though amount of performance comparisons of

different 3D object descriptors has been reported before, no previous work can

be referred to with respect to the problem of 3D object classification to the best

of our knowledge. Therefore, we firstly compare three categories of existing

3D object descriptors in terms of their effectiveness in 3D object classification.

We use 10-fold cross validation to train a SVM classifier C [13] for natural

and man-made objects (i.e., a typical binary classification problem) based on

the PSB training set [40]. Six descriptors lying in three categories are chosen

and compared for this purpose, i.e., point distribution based D2 [31] and AAD

[30], view projection based DBD and SIL [49], and 3D space structure based

RSH [49] and EDT [27].

From the observation of Figure 4.2, EDT outperforms the other descriptors
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significantly for the 3D object classification problem, and we use EDT and

its corresponding classifier trained on the PSB training set in the following

experiments. Note that the PSB training set are taken as the referent objects

here. Some more objects can be added.

Besides, an interesting byproduct worth pointing out is that, within the

area of 3D natural and man-made object classification, space structure based

methods (EDT and RSH) works better than view projection based ones (SIL

and DBD), while point distribution based ones (D2 and AAD) are the worst.

In our another experiment which is not reported in this chapter, we find that

for 3D object retrieval problem, view projection based methods are better

than space structure based ones and point distribution based ones are also

the worst. Therefore, we may make an incomplete conclusion that descriptors

extracted from the 3D object structure are the most expressive and robust

representation of the objects and can be used in different applications with

fairly good performance.

4.2.2 Inferring Priors Using 3D Object Classifier

Motivated by the distinct results in section 4.1, we propose to incorporate the

outputs of the classifier C to have a refined distance modification for 3D object

retrieval. For example, when compare the similarity of the query Q and an

object Oi in the database, the distance between them may be defined as below,

d(Q,Oi, C) = e−v1v2 · d(Q,Oi), (4.2)

where C is the classifier learned in Section 4.2.1, v1 and v2 are the decision

values for the query Q and object Oi respectively outputted by the classifier

C, and d(Q,Oi) is the original distance defined based on the pure shape de-

scriptors without any prior. Note that decision values are positive for natural

objects and are negative for man-made objects.
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NN FT ST EM DCG
(EDT, L1) 0.57 0.318 0.423 0.245 0.589

(EDT, C, L1) 0.577 0.330 0.437 0.253 0.596

Table 4.2: Performance evaluation of EDT on PSB test set with and without
learned prior by SVM classifier C. (the second and third row respectively).

Recall the two scenarios mentioned above. If objects in the database are not

classified, both labels as well as decision values of the query and the object have

to be predicted by the classifier C. If objects in the database are classified in

advance, only the query is necessary to be predicted. In the latter case, decision

value v2 of object Oi is simply set as +1 (natural object) or −1 (man-made

object).

However, experimental verification tells that this modification (Equation

4.2) performs bad. The main reason is that the predicted decision values are

not quite right. Some false positives and false negatives generate noisy decision

values.

4.2.3 Reducing False Positives

In our experiments, we find that false positives of the output of classifier C
have a tremendously negative influence on the retrieval results. Therefore, a

probability threshold Pt is used to reduce the false positives, and the distance

measure is modified as below,

d(Q,Oi, C) =




∞ if C(Q) 6= C(Oi) & P (C(Oi)) > Pt,

d(Q,Oi) otherwise,

(4.3)

where Pt = 0.95 is used in the following experiments, and C(Q) and C(Oi) are

the predicted labels of Q and Oi by the classifier C respectively.

Applying Equation 4.3 to the EDT descriptor on PSB test data set, similar

performance enhancement to section 4.1 is observed (Table 4.2).
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4.3 Conclusion and Future Work

This chapter demonstrated the effect of a weak prior, whether an object is man-

made or natural, for 3D object retrieval. Motivated by such a big improvement

based on the weak prior, we intended to propose a learning method to infer the

prior. The SVM classifier was suitable for this task and similar improvement

was observed. In the future, we will try to find some more elaborate methods

to predict the weak prior. Besides, some more priors may be learned from the

referent objects to boost the 3D object retrieval.



Chapter 5

3D Facial Expression

Recognition

Facial expression recognition has many applications in multimedia processing,

and the development of 3D data acquisition techniques make it possible to

identify expressions using 3D shape information. In this chapter, we propose

an automatic facial expression recognition approach based on a single 3D face.

Our method firstly builds a reference face for each input 3D non-neutral face

by a learning method, which well represents the basic facial shape component

(BFSC). Then, based on the BFSC and the original expressional face, a facial

expression descriptor is designed. Surface depth changes are considered in the

descriptor. Finally, the descriptor is input into an Support Vector Machine

(SVM) to recognize the type of expression.

5.1 Introduction

Automatic facial expression recognition is an important research topic with

many applications. In human-computer interface (HCI) community, affective

computing employs human emotion to build more flexible and natural multi-

modal systems [24]. In face recognition, researchers have to pay great attention

to handling the effect of expressions [41]. In 2D or 3D face retrieval, automatic

40
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facial expression recognition can serve as a particular kind of feature or a re-

ranking algorithm to provide more accurate retrieval results. Moreover, 3D

face models have been one of the five tracks of 3D Shape Retrieval Contest

(SHREC) since 2007 [7].

In the past two decades, many efforts have been paid on 2D expression

recognition [17, 34]. However, since 2D facial images are essentially projections

of 3D human faces, facial expression recognition techniques based on them

suffer from pose and illumination variations. With the rapid development

and the dropping cost of 3D digital acquisition devices, 3D face data, which

represent faces as 3D point sets or range data, can be captured more quickly

and accurately. Several public 3D face databases have been available now

[53, 36]. 3D face data contain explicit 3D geometry, so more clues can be used

to encode data changes caused by expressions and handle the variations of

face poses. Thus, the use of 3D information in facial expression recognition

has attracted attention and some techniques have been presented in recent

years [50, 42, 44].

Based on the observation that 3D surface features represent intrinsic facial

surface structures associated with specific facial expressions, Wang et al. [50]

proposed a primitive surface feature stemming from two surface geometric

features, curvature and gradient. They partitioned a 3D face into seven regions

guided by the neuro-anatomy knowledge and obtained the statistical primitive

feature distribution in each region. They showed that their algorithm is better

than two 2D appearance based methods using Gabor wavelets and topographic

context. Note that their partitioned regions do not contain the mouth and eyes,

which are often used as expressional regions in 2D image based methods [33],

and their algorithm involves manually labeled feature points in order to obtain

more accurate region partitions.

Soyel and Demirel [42] represented different facial actions by six character-

istic distances using eleven manually labeled feature points. They compared
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Figure 5.1: Comparison between previous framework (a) and ours (b) for 3D
facial expression recognition. In the previous methods, a manually labeling
process is required to determine the fiducial points on a 3D face model. Besides,
some expression recognition algorithm also requires a neutral face together
with the expressional face to be analyzed. In contrast, our algorithm is able to
automatically align faces to a canonical coordinate frame, and the neutral face
is synthesized as a basic facial shape component (BFSC) through a learning
method.
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their 3D distance vector based facial expression recognition (3D-DVFER) algo-

rithm to the 2D appearance based Gabor-wavelet algorithm. The experiments

showed the superiority of their 3D-DVFER. Tang and Huang [44] further ex-

plored the effect of the distance vectors using more manually labeled feature

points. They presented both manually designed and automatically selected

distance vectors using a feature selection algorithm based on Kullback-Leibler

divergence. To achieve the person-independent requirement, Soyel and Demirel

[42] normalized the distance vector of an expressional face by the width of the

face, while Tang and Huang [44] normalized the distance vector of an expres-

sional face by facial animation parameter units (FAPUs) in its corresponding

neutral face as guided by the MPEG-4 standard.

The above methods have demonstrated the superiority of 3D face based

methods over 2D image based ones. The main drawbacks of these methods

are that they all need manually labeled facial key points for facial expression

recognition in both training and testing processes. In addition, [44] also needs

the help of neutral faces. These drawbacks make these methods can only work

under some constrained conditions.

This chapter proposes an automatic facial expression recognition approach

based on a single 3D face. An expressional 3D facial surface is assumed as

an approximate sum of two parts. One is a basic facial shape structure which

contains little information of expressions and is commonly person-specific. The

other is expressional shape component (ESC) which includes rich information

about expressions. The ESC is expression-specific, and thus ESCs caused

by similar expressions are also similar among a large range of different facial

samples. The basic facial shape component (BFSC) is estimated from a group

of aligned training data and the input expressional face. After that, based on

expressional regions of the BFSC and the original expressional face, the shape

depth information is encoded as expression descriptors which are used for a

Support Vector Machine (SVM) for classification. The whole framework of
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our method is shown in Fig. 5.1(b), together with previous one for comparison

in Fig. 5.1(a). It not only performs better than previous ones, but also is

independent of the manual labeling of facial feature points. To the best of our

knowledge, this is the first 3D facial expression recognition algorithm without

the need of the manually labeling process.

5.2 Separation of BFSC and ESC

The ESC of an expressional 3D face is the surface deformation of the basic

face shape, e.g., the neutral face. Since neutral faces are not always available

in expression recognition problems, we propose a learning-based method to

estimate the basic face shape of an input expressional 3D face. The estimation

uses the information of a group of neutral faces and the input expressional

face. Then, the ESC is separated by subtracting the basic face shape from the

original expressional face. In addition, before estimations of the basic faces,

all 3D face samples are put in a standard coordinate system by an automatic

alignment method.

5.2.1 3D Face Alignment

We use the same preprocessing as Wang et al.’s in [51] to align every face in a

standard coordinate system. Let S denote the point set of a 3D face, and Sm

be its mirror set with respect to some plane Em. Then the ICP algorithm [11]

is adopted to register Sm to S. A facial symmetry plane can be defined as the

fitting plane of the midpoint set B = {pb
i |pb

i = (pi + pm
i
′)/2, pi ∈ S, pm

i
′ ∈ Sm′},

where Sm′ is the corresponding point set of Sm after the registration. Based

on this symmetry plane, the central profile is found and two key points, the

nose tip and the top of nose bridge, are robustly extracted on the profile. we

can define a standard coordinate frame, in which the origin is the nose tip and

the three axes are placed as shown in Fig. 5.2. The detail can be found in [51].
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Figure 5.2: 3D face alignment in the standard coordinate frame.

After the alignment, a 3D face can be represented by a depth image, which is

obtained by sampling the projection of the 3D face on the x-y plane with a

size of 100×100 in our experiments.

This process allows us to estimate the basic face structure from its corre-

sponding expressional face placing in a standard coordinate frame, which is

described in the next subsection. Furthermore, it makes our method without

the need of manually labeling the feature points on the faces.

5.2.2 Estimation of BFSC

Our BFSC estimation is based on the assumption that given sufficient training

samples, a new face can be recovered approximately by the linear combination

of the training faces. Suppose that each depth image is represented by a vector

x ∈ RN and there are M training samples {xi}M
i=1 which are all neutral faces.

Then we approximate the basic face x̂e of an expressional face xe by the linear

combination of the training samples:

x̂e ≈
∑

i

cixi = [x1,x2, · · · ,xM ][c1, c2, · · · , cM ]T = Xc, (5.1)

where c = [c1, c2, · · · , cM ]T and X = [x1,x2, · · · ,xM ].

One possible solution to determining the weights {ci}M
i=1 is to use the dis-

crete Karhunen-Loeve transform (KLT) [38]. Without loss of generality, sup-

pose that x̄ =
∑

i xi = 01 . Let {(ei, λi), i = 1, 2, · · · , N} be the eigensystem

1This can be obtained by subtracting the mean of all the training samples from every
sample.
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of XXT , where λ1 ≥ λ2 ≥ · · · ,≥ λN . Also let P = [e1, e2, · · · , eN ]. These

eigenvectors span a linear face space. Many eigenvectors are devoted to indi-

vidual differences in face structure, while noise, mainly facial expressions here,

are represented orthogonal to these eigenvectors [33]. So we can reconstruct

the neutral face structure if proper eigenvectors are selected, which are of-

ten the first K (K ≤ M) eigenvectors. Let P̂ = [e1, e2, · · · , eK ]. Thus, the

reconstructed basic face can be approximately represented as

x̂e ≈ P̂w, (5.2)

where w = P̂ Txe. Note that xe is the expressional face being recognized while

x̂e is its corresponding basic face being reconstructed by the projections of xe

on the selected eigenvectors. The matrix P can be computed from P = XV Q,

where V is the matrix formed by the eigenvectors of XT X, Q = [D|O], D =

diag(
√

λ−1
1 ,

√
λ−1

2 , · · · ,
√

λ−1
M ) is a diagonal matrix, and O is an M× (N−M)

zero matrix [19]. So,

x̂e ≈ P̂w = XV̂ Q̂w, (5.3)

where V̂ is formed by the first K columns of V and

Q̂ = diag(

√
λ−1

1 ,

√
λ−1

2 , · · · ,
√

λ−1
K ). (5.4)

With (5.3) and (5.1) we have c = V̂ Q̂w. Finally, the BFSC x̂e of an expres-

sional face is computed by Xc.

5.3 Expressional Regions and

An Expression Descriptor

In expressional face images, the eye regions and mouth regions are considered

as expressional areas containing rich information of expressions [33]. Since

the depth images are built based on the aligned 3D faces, these regions can
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...

(a) (c)(b)

Figure 5.3: Expressional region mask. (a) A group of aligned depth images.
(b) The average depth image. (c) The mask including the eye regions and the
mouth region.

be easily extracted by a mask. As shown in Fig. 5.3(a), we randomly select

300 depth images from the training samples, and calculate an average depth

image (see Fig. 5.3(b)). The centers of the eyes and mouth together with three

rectangle regions are used as a mask for extracting the expressional regions. We

find that the recognition results are not sensitive to the sizes of the rectangle

regions. Thus, the size of each eye region is set to 32×20 and the size of the

mouth region is set to 40×25, empirically. The main advantage of the mask

is that it helps to find key regions without the need of manual labeling in the

testing.

With the BFSC and the original expressional face, the deformation of facial

surface can be captured by encoding the depth differences between them. By

the expressional region mask, the gray levels of the depth images within the

three regions in the BFSC and the original face are arranged with the same

order to form two vectors. Then an expression descriptor of a 3D face is defined

as:

F(fe, fb) = F(fe)− F(fb), (5.5)

where F(fe) and F(fb) are the vectors extracted from the original face and its

corresponding BFSC, respectively. The feature vectors are used for training

and testing by an SVM algorithm.
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5.4 Experiments

In this section, we test our facial expression recognition method on a database

named BU-3DFE [53]. The database contains 100 subjects with both males

and females and a variety of ethnic ancestries and ages. 25 faces are captured

for each subject, i.e., 6 prototypical expressions each with 4 different intensities

and a neutral face (see the detailed description of the database in [53]).

The BU-3DFE database is used in existing facial expression recognition

work [50, 42, 44]. The previous common setting is that 720 3D faces of 60

subjects are selected in their experiments, each subject with 12 expressional

samples (2 higher intensities for every kind of expression). The 60 subjects

are randomly partitioned into two subsets, a training set with 54 subjects (648

samples) and a test set with 6 subjects (72 samples). According to different

partitions (54 vs. 6), 20 independent experiments are performed in [50], while

in [42] and [44], 10 experiments are conducted. The reported results are the

averages of the results of the independent experiments. In our experiments,

we use the similar setting for comparison purpose.

5.4.1 Testing the Ratio of Preserved Energy in the BFSC

Estimation

This experiment tests how different ratios of preserved energy in the BFSC

estimation affect the recognition. Ten ratios from 0.1 to 1.0 with an interval

of 0.1 are tested and Fig. 5.4 shows the average recognition rates. The highest

recognition rate of 71.63% is achieved at the energy ratio of 0.4. This ratio is

then used for the subsequent experiments.
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Figure 5.4: Average recognition rate vs. the ratio of preserved energy in the
BFSC estimation.

5.4.2 Comparison with Related Work

In this section, we compare our method with the related work using the 54-

versus-6-subject partitions. As pointed out in the beginning of this section,

different partitions are independently trained and tested, and the average of all

the results is shown as the final result. The partition process should guarantee

that every subject is tested at least once. This subject-based partition aims to

test how well the algorithm is with respect to the person-independent require-

ment in facial expression recognition. The selected 60 subjects are the same

as those in [50]. However, we find that neither 20 [50] nor 10 [42, 44] times

of experiments are enough to have a stable result. The average recognition

accuracy obtained by 10 or 20 random experiments varies greatly, from about

50% to more than 90%. So we run the experiments 1000 times independently

and obtain stable average recognition accuracies for all the methods. All the
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% F(fe) F(fe, fn) F(fe, fb)
dist-soyel [42] 67.52 – –
dist-tang [44] – 74.51 –
prim-curv [50] 61.79 – –
ours (depth) 68.77 76.22 71.63

Table 5.1: The comparison of different facial expression descriptors.

% AN DI FE HA SA SU
AN 71.41 12.28 2.92 0.00 15.30 2.48
DI 9.87 76.60 7.18 2.03 2.84 2.94
FE 3.91 4.92 62.48 15.33 2.87 4.76
HA 0.72 2.43 9.32 81.21 0.00 0.49
SA 14.06 1.11 4.56 0.00 77.49 1.19
SU 0.03 2.66 13.52 1.42 1.50 88.13

Table 5.2: The average confusion matrix obtained by our method.

results below are obtained using this experimental setting. The RBF kernel of

SVM is used for classification in the four methods.

We compare different facial expression descriptions in Table 5.1, includ-

ing Soyel and Demirel’s distance vector (dist-soyel) [42], Tang and Huang’s

manually designed distance vector (dist-tang) [44], primitive surface feature

(prim-curv) similar to [50] but obtained based on [43], and our depth feature

(depth).

In Table 5.1, the second column records the recognition results of the fea-

tures obtained from the expressional faces only (F(fe)), the third column shows

the results of the features based on both the expressional faces and the neu-

tral faces (F(fe, fn) = F(fe) − F(fn), where fn denotes a neutral face), and

the fourth column shows the result from the expressional faces and the es-

timated BFSCs (F(fe, fb)). Obviously, F(fe, fb) performs better than F(fe),

which indicates that the separation of BFSC and ESC is effective for expres-

sion recognition. When compared with [44] that requires neutral faces and the

manual labeling (the third column), our method (also using the neutral faces)

still obtains better result. It should be noted that the previous three methods
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all need manually labeled facial key points for the recognition, while ours is

automatic.

One common characteristic of all the descriptors is that they all recognize

“Happiness” and “Surprise” better than other types of facial expressions. The

average confusion matrix obtained by our algorithm is shown in Table 5.2,

where AN, DI, FE, HA, SA and SU are short for “Anger”, “Disgust”, “Fear”,

“Happiness”, “Sadness” and “Surprise”, respectively.

5.5 Conclusion

In this chapter, we have developed an automatic 3D facial expression recog-

nition algorithm requiring no manual facial keypoint labeling assistance. An

expressional face is separated as a basic facial shape component (BFSC) and

an expressional shape component (ESC). The description of facial expressions

is designed based on both the original expressional face and its BFSC. Our

algorithm obtains the highest average recognition rates in the comparison ex-

periments. In addition, we find that the neutral face plays an important role

in improving the facial expression recognition accuracy, which further shows

that the separation of BFSC and ESC should be an important part of a facial

expression recognition system.
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Conclusion

In this thesis we have carried out our initial attempts on 3D object retrieval

and recognition, i.e., a novel shape descriptor for 3D articulated object retrieval

and its enhancement for retrieving generic 3D objects, a modification to the

typical retrieval framework by using a set of referent objects, and an automatic

3D facial expression recognition algorithm. In this chapter, we will summarize

our contribution and important results, as well as some suggestive directions

for future work.

Chapter 1 introduced voxel, mesh, and range image models for 3D object

representation firstly, and then outlined our work in this thesis.

Chapter 2 reviewed related work on 3D object retrieval, including some

main modules of a typical retrieval framework, publicly available databases,

and some experimental systems. Query formulation and user interface are

gaining much more prominence when we come to 3D object retrieval, because a

common user is usually short of 3D models and might find it difficult to build a

3D model using current softwares or tools. Canonical coordinate normalization

is adopted by many systems to achieve invariance to 3D object’s translation,

scale, and rotation, while some other systems fulfill this task by using invariant

shape descriptors. Feature extraction is the essential part for a successful 3D

object retrieval algorithm, and hence plenty of work can be found on this

topic [46, 12, 52]. We also proposed a novel one in chapter 3 and showed its

52
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superiority over existing descriptors. In this chapter, we also surveyed existing

databases and experimental systems as thorough as we could. At the end of

this chapter, we summarized some challenges on 3D object retrieval.

In chapter 3, we proposed a novel shape feature called object flexibility

to describe the local characteristic of a 3D object. The bag-of-words model

was introduced to formulate a final shape descriptor based on the local fea-

ture. We demonstrated that this descriptor was suitable for retrieving objects

with articulated parts, and was a good supplement to generic object retrieval

methods.

We showed our trial modification to the typical 3D object retrieval frame-

work by involving a weak prior, whether an object was man-made or natural,

in chapter 4. Motivated by the fact that this prior was able to improve the

retrieval results on PSB database [40] distinctly, we proposed to use a 3D

object classifier to learn this prior and incorporate it to traditional retrieval

algorithms. Some promising experimental results were shown in this chapter.

We suggest that some other prior information can be learned from the referent

objects.

Chapter 5 was about our work on 3D object recognition, in particular,

3D facial expression recognition. An automatic posture alignment process

was leveraged to replace the tedious manually labeling work in previous work.

Another advantage of our work was that our algorithm synthesized a basic

facial shape component of an expressional 3D face, which was a byproduct of

our recognition algorithm, and was also an functionality of our algorithm when

no neutral faces were available.

As the increase of 3D object number and the development of 3D scanning

techniques, issues raised during this trend will attract more and more research

efforts. 3D object retrieval and recognition will remain as the most challenging

problems.
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