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ABSTRACT
There has been a prominent emergence of work on video predic-

tion, aiming to extrapolate the future video frames from the past.

Existing temporal-based methods are limited to certain numbers of

frames. In this paper, we study video prediction from a single still im-

age in the facial expression domain, a.k.a, facial image-to-video
translation. Our main approach, dubbed A�neGAN, associates
each facial image with an expression intensity and leverages an

a�ne transformation in the latent space. A�neGAN allows users to

control the number of frames to predict as well as the expression in-

tensity for each of them. Unlike previous intensity-based methods,

We derive an inverse formulation to the a�ne transformation, en-

abling automatic inference of the facial expression intensities from
videos — manual annotation is not only tedious but also ambiguous

as people express in various ways and have di�erent opinions about

the intensity of a facial image. Both quantitative and qualitative

results verify the superiority of A�neGAN over the state of the

arts. Notably, in a Turing test with web faces, more than 50% of the

facial expression videos generated by A�neGAN are considered

real by the Amazon Mechanical Turk workers. This work could

improve users’ communication experience by enabling them to

conveniently and creatively produce expression GIFs, which are

popular art forms in online messaging and social networks.
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1 INTRODUCTION
GIF is a popular art form in online messaging and social networks.

As a picture is worth a thousand words, GIFs, as short video se-

quence containing multiple pictures, convey vivid contents like

humor and emotion. It improves users’ communication experience

signi�cantly if the users can conveniently and creatively make GIFs,

that is, generate video from simple inputs like few still images and

several control conditions. There has been a prominent emergence

of work on video prediction [3, 13, 14, 19, 24, 25, 30], which aims to

extrapolate the future frames from the past. Despite the progress,

most previous works [3, 13, 19, 22, 24–26, 29, 30] are temporal-
based, which require predicted videos to be pre-de�ned numbers

of frames, hence users are unable to control the temporal lengths

or varying speeds of the videos once the models have been trained.

Thus, the temporal-based methods are not so �exible for users to

generate interesting videos.

In this paper, we are concerned with generating video sequences

of facial expressions from a single still image. Unlike temporal-based

work, we do not limit our output to any speci�c time span. Instead,

we aim to predict a full intensity-based procedure of an expres-

sion change from the neutral state to the peak (e.g., laugh loudly).

Users can control the frame rate of this procedure and generate as

many frames as possible to unfold the expression. To achieve this,

we assign each video frame a non-negative scalar, indicating the

relative intensity of the current expression in the full neutral-to-

peak procedure. Given an input image, our model hallucinates a

sequence of video frames with an increasing series of non-negative

expression intensities. This series can be customized and, in the

extreme case, can contain a single scalar which instructs the model

to generate only one frame corresponding to that intensity.

One of the major challenges is how to train such a model that au-
tomatically infers the expression intensities from the training

videos. Most previous intensity-based approaches for expression

synthesis manually label the intensities of frames by their temporal

positions in the training video [7, 15]. In this way, their training
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Figure 1: An illustration of predicting “drumming cheeks”
expression. Compared to temporal-based methods, A�ne-
GAN can predict videos of arbitrary temporal lengths. Su-
perior to previous intensity-based methods, it can automat-
ically infer the intensities without dense annotations.

processes demand complete videos as targets, thus are unfeasible

to deal with incomplete, periodic, or unordered frames that are

usually encountered in practice. Also, we contend that hand-craft

annotations are not only costly but also vague. While a fairly good

consensus could be reached at what is a neutral state, people tend to

have di�erent opinions about the peak expression. In other words,

user annotation would inevitably cause ambiguity and confuse the

learner. Moreover, if we have multiple videos of a person express-

ing the same emotion, her/his peak state may not appear in all the

videos. The speeds of the expressions could also vary from one

video to another. Consequently, if we resort to manually annotating

the expression intensities, it would be costly and challenging to

align the videos to each other precisely.

In order to address the above issues, we make a mild assumption

enabling our model to derive the expression intensity automat-
ically for any training frame: there exists a latent space in which

the codes of frames take the a�ne form, i.e., f t = f
0
+ at f ∆,

where f t and at are respectively the latent code and expression

intensity of the t-th frame, f
0
is the latent code of a neutral frame,

and f ∆ encodes the direction to move from the neutral state to

the current expression. We jointly learn all of them with the mere

annotation of a neutral face frame per training video. The key is

to relate the unknown expression intensity at with the codes of

the training frames, by which deriving at is possible based on the

aforementioned a�ne transformation. Fig. 2 depicts our approach.

Both quantitative and qualitative results verify the superiority of

A�neGAN over the state of the arts. Especially, in a Turing test with

web faces, more than 50% of the generated expression videos are

considered real by the Amazon Mechanical Turk workers. Finally,

experiments also demonstrate the e�ectiveness of our approach in

learning from incomplete, periodic, or unordered training frames.

We summarize the contributions of our paper as follows.

• We develop the A�neGAN for predicting facial expression

videos of arbitrary temporal lengths from a single still image.

More importantly, it can automatically infer the expression

intensities from both training and test frames.

• A�neGAN can handle the training videos that are practi-

cally incomplete, unordered or periodic, requiring the mere

annotation of only a neutral face frame per video.

• A�neGAN generates more realistic facial expressions than

several competitive baselines and fools more than 50% work-

ers in a Turing test. It can support people to conveniently

and creatively make expression GIFs, which are popular in

online messaging and social networks nowadays.
1

2 RELATEDWORK
Image-to-Image Translation. Image-to-image translation aims

to translate images from one domain to another domain. Due to the

power of GANs [10] in image generation, most recent approaches

apply conditional GANs for image-to-image translation, where they

condition on an input image and generating a corresponding output

image [11]. Furthermore, the cycle consistency is considered in the

translation between unpaired domains [4, 31]. Bene�t from cGANs

and cycle consistency, the image-to-image translation has been

successfully applied to image synthesis [27], style-aggregated face

generation [5], and video-to-video translations [28]. Our task can

be seen as consequent image-to-image translations, but it is more

challenging to model the dynamics and consistency.

Temporal-based Video Prediction. Inherently, frames are tem-

porally related in videos. Therefore, most previous approaches for

video prediction capture the temporal correlations based on 3D

convolutional neural networks [13, 19, 26, 30] or recurrent neural

networks [3, 8, 9, 22, 24, 25, 29, 30]. For example, Li et al. [13] pro-
pose a two-stage framework: the �rst phase predicts multiple time

step optical �ows and the second phase synthesis future frames from

the �rst frame and the predicted �ows. In [25], the authors adopt

LSTM to observe several consecutive poses and predict future poses.

However, for image-to-video translation, as only a single image is

observed, temporal-based methods are hard to get enough sequence

information. Also, limited by 3D CNN and LSTM, temporal-based

methods could only generate certain numbers of frames. In contrast,

our approach models the intensity changes instead of the temporal

changes, so we can control the number of predicted frames and the

intensity for each of them.

Controllable Facial Expression Synthesis.Recently, researchers
have shown enthusiasm for controllable manipulation of facial ex-

pressions. Simple solutions like DFI [23] traverses the latent feature

space and making linear interpolation between the average at-

tributes of the source and target set in the latent space. However,

it ignores the intensity of expressions and requires both sets to be

similar enough to the test image. To tackle this challenge, on the

one hand, researchers turn to �ne-grained manual representations.

G2-GAN [21] utilizes �ducial points (landmarks) as the controllable

condition to guide facial expression synthesis. GANimation [17], a

GAN conditioning scheme, aims to control the change of skin and

muscles based on Action Units (AUs). However, the landmarks or

AUs are hard to represent all the potential expressions and need to

be annotated by unsatisfactory external tools. On the other hand,

some researchers model the intensities of facial expression images

explicitly. CAFP-GAN [15] uses controllable labels (expression and

intensity) for expression synthesis. In [7], the authors proposed

1
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Figure 2: Framework of the proposed A�neGAN.

a user-controllable approach to generate videos clips of variable

lengths from a single face image. However, these work manually

label the expression intensities by their temporal positions in a

training video. It incurs errors when the expression is incomplete

or periodic and is a weak proxy for intensity as it assumes the speed

of expression change is constant over time.

Comparing with the works above, our approach can infer the

intensity automatically for the training frames and requires no

large datasets, external tools, or extra annotations. Therefore, our

approach is more �exible and robust, which can be trained with

even incomplete or unordered frames in small datasets.

3 AFFINEGAN
Our goal is to generate a sequence of video frames V := {I t }Tt=0,

given as input a neutral face image I0 ∈ RH×W ×3
, where H andW

are respectively the height and width of the image. This sequence

unfolds an expression change beginning from the neutral face. We

model each frame I t at time t as a function of the input face I0
and an expression intensity at ≥ 0, namely, I t = д(I0,at ). As this
paper is concerned with the videos of facial expressions, we may

cast some immediate constraints over the function д(I0,at ) to be
learned. First, it should enable the self-reconstruction of the input

image when a0 = 0, i.e., I0 = д(I0, 0). Second, we should design the

function to make this procedure “monotonic” with respect to the

expression intensity at . The larger at is, the further the generated
expression I t is from the neutral image I0 and the closer it is to

the peak state of the expression (e.g., laugh loudly). Finally, the

output frame д(I0,at ) achieves at the peak expression state when

at ≈ 1. The last constraint ensures that the range of the expression

intensity is close to [0, 1], so that users can refer to this range when

they specify the expressions for our model to predict.

The above problem formalism is advantageous over the existing

video prediction works as it allows users to control the frame rate

to depict the procedure of an expression change. The downside,

however, is that the function д(I0,at ) depends on the expression

intensity at , which is non-trivial to determine for the training

frames. Fan et al.’s work [7] is the closest to ours. The authors

suggest to bound at by 1 and then set it to a frame’s normalized

temporal position in a training video. However, this labelingmethod

incurs errors when the training video is incomplete (an expression

does not reach the peak state) or periodic (a person smiles again

and again). Moreover, the temporal position could be a weak proxy

to the expression intensity, as it basically assumes the speed of the

expression change is constant over time. Finally, as we discussed

earlier, people are expressive in distinct ways, making it hard to

manually label the peak state across di�erent subjects.

In order to tackle the challenges, we propose to automatically

infer the expression intensity of a training video frame by imposing

a mild assumption about the facial expressions changed linearly in

a latent space. Thus, the mere annotation required for our approach

is to select a frame per training video of a neutral face, which is

often the �rst frame of the video.

3.1 Framework Design
We �rst describe a generator which approximates the frame pre-

diction function д(I0,at ), followed by the method to derive the

intensity at . We denote by Î t the estimated output of д(I0,at ) to
distinguish it from the ground-truth frame I t in the training set.

Generator. We make use of two encoders E0 and E∆ — one is

called the basic encoder and the other called the residual encoder —

to obtain the latent codes f
0
and f ∆ in the same latent space,

f
0
= E0(I0), f ∆ = E∆(I0), (1)

where, by the residual vector f ∆, we attempt to capture the di-

rection of the expression change originated from the neutral state

f
0
. The latent code of the target image is constructed through an

a�ne transformation of the latent code f
0
of the neutral face, the

expression change direction f ∆, and the expression intensity at ,

f̂ t = f
0
+ at f ∆ . (2)

Despite its simplicity, this a�ne formulation can ful�ll the three

constraints over the frame prediction function д(I0,at ) laid out

in Section 3. Indeed, the self-reconstruction property is naturally

satis�ed, f̂
0
= f

0
; the monotone is guaranteed since at ≥ 0; and

we will show how to regularize at by a uniform distribution over

[0, 1] such that the peak expression is reached at about at ≈ 1.

Finally, we generate the target image by feeding the latent code

f̂ t to a decoder De(·),

д(I0,at ) ≈ Î t = De( f̂ t )

= De(E0(I0) + atE∆(I0)). (3)



It is interesting to read from the equation above that we may train

the encoders and the decoder using pairs of images (one neutral

face and the other an expression face). This gives us the �exibility

of using a large batch size by sampling pairs from more than one

training videos.

Thus far, we still have not addressed how to infer the expression

intensity at . We present our solution next.

Inferring at . Our approach to inferring the expression inten-

sity at hinges on the a�ne equation Eq. (2), from which we can

calculate at inversely if we know the other quantities. Concretely,

the calculation is as follows, and the propositions are proved in the

supplementary materials.

Proposition 1. If f̂ t = f
0
+ at f ∆, then we de�nitely have

at = ( f̂ t − f
0
)T f ∆ / f T∆ f ∆.

Of course, we do not know f̂ t unless through Eq. (3), leading

to a chicken-and-egg issue. However, we do have access to the

groundtruth video frame I t in the training stage, so we can encode

it through the basic encoder f t = E0(I t ). Since f̂ t is an approxima-

tion of f t in the latent space by design, we instead use the features

f t of the groundtruth video frame to compute at ,

at ≈ (f t − f
0
)T f ∆ / f T∆ f ∆ . (4)

We can also justify Eq. (4) by the proposition below.

Proposition 2. If f̂ t = f
0
+ at f ∆, then the optimal solution to

argminat ‖ f t − f̂ t ‖2 is given by Eq. (4), where ‖ · ‖2 is the `2 norm.

In other words, we acknowledge by the proposition that replac-

ing f̂ t with f t incurs inconsistency when f̂ t , f t . However,
Proposition 2 tells that updating at via Eq. (4) is still the optimal

choice in terms of the mean-squared error since it brings the two

features close as much as possible. In a sense, it also ensures the

generated image from f̂ t close to the real one. Another advantage

of Eq. (4) is that it involves the term f t − f
0
that naturally correlates

the value of at with the di�erence between the target and input

features: if f t = f
0
, then at = 0; if f t is far away from f

0
, then

at is large too. The o�set term f t − f
0
is projected to the residual

direction f ∆, so what survives is only the information relevant to

the facial expression change.

We apply some straightforward enhancements to Eq. (4):

at = p(I0, I t ) :=

����� (f t − f
0
)T f ∆

f T∆ f ∆ + ϵ

����� , (5)

where a small value ϵ > 0 is added to the denominator to prevent it

from the ill-de�ned situation. Additionally, the absolute operation

ensures that at is non-negative.
The overall encoder-decoder. Instantiating the intensity in

Eq. (3) with Eq. (5) gives the overall structure,

Î t = De(E0(I0) + p(I0, I t )E∆(I0)), (6)

which is also depicted in Fig. 2. For generation, we choose a series

of linearly increasing expression intensities {at } from [0, 1] and

produce the corresponding images {̂I t }. We train models for ex-

pressions respectively, but it is easy to make a uni�ed model by

spatially replicating and concating domain labels, as well as adding

a domain classi�cation loss as in StarGAN [4].

3.2 Loss Functions
Given a training video clip of length T , we assume that the �rst

frame I0 is a neutral expression. We do not require the T -th frame

to be at the peak of the expression. Since our model automatically

determines the intensity for each frame, it can justify which frame

is at the crested point. As below, we present the training losses.

Adversarial losses on images. Recall that Î t is a frame pre-

dicted by applying Eq. (6). The �rst loss we use to train the proposed

A�neGAN, which consists of the encoders E0 and E∆ and the de-

coder De , is an adversarial loss,

Lд := − log(1 − Dд (̂I t )) − logDд(I t )), (7)

where Dд is a global discriminator which takes as input an image.

Following [7], we can also employ an adversarial loss on some

informative local regions of the frames optionally,

Ll := − log(1 − Dl

(̂
I t ◦Mt

)
) − logDl (I t ◦Mt ) , (8)

where Dl is the local discriminator,Mt is the mask to crop out the

local patch of interest, and ◦ denotes element-wise multiplication.

Reconstruction losses. Following [11], we further augment the

adversarial loss with the reconstruction error between the estimated

expression Î t and ground-truth I t , i.e.,

Lr1 = ‖I t − Î t ‖1. (9)

In addition to this, all target images I t should also reconstruct

themselves after passing through the encoder E0 and the decoder

De . Hence, we de�ne the second reconstruction loss by

Lr2 = ‖I t − De(E0(I t ))‖1. (10)

Adversarial loss on at . As Eq. (5) shows, the expression inten-

sity at is not naturally restrained within any particular range. We

apply another adversarial loss to regularize its value so that it does

not deviate away from the range [0, 1]. To do so, we de�ne

La := − log(1 − Da (at )) − logDa (x)), (11)

where Da is the discriminator and x is sampled from the uniform

distribution over [0, 1], i.e., x ∼ Uni f (0, 1).
Combining the above losses together, we alternately optimize

the A�neGAN model and the discriminators by

min

Dд ,Dl ,Da
max

G

∑T

t=1
Lд + Ll + Lr1 + Lr2 + La . (12)

where G refers to the generator. We empirically set the weights

using validations. For a better understanding of our model, we

summarize the entire procedure (Fig. 2) as follows:

• Training: E0 encodes a neutral face I0 and a target face I t
to latent codes f

0
and f t , and E∆ encodes the direction f ∆.

Thus, the intensity at can be inferred through Eq. (5), and we

can reconstruct target face Î t by Eq. (6). Then, the generators
and discriminators can be optimized following Eq. (12).

• Generation: given a neutral face I0, f 0 and f ∆ can be en-

coded by E0 and E∆. Thus, when intensity sequence {at }

comes, the target expressions {̂I t } are generated by Eq. (3).



4 EXPERIMENTS
Datasets. As we require each training video contains one single

expression of di�erent intensities behaved by one single person,

we construct CK-Mixed and Cheeks&Eyes datasets as follows:

CK-Mixed. The Cohn-Kanade (CK+) [16] dataset is prevalent in
the facial expression analysis, where each expression is unfolded

from the initial neutral state monotonically. It contains 593 videos of

8 emotion categories, in which most of the videos are in gray-scale

except for the “contempt” class. To better analyze the emotions in

RGB-scale, the CK++ [7] dataset adds 558 RGB-scale videos to the

“happy”, “angry”, and “surprise” categories acted by 65 volunteers.

We train and validate our approach on the CK-Mixed dataset that

collects RGB-scale videos of the categories “happy”, “angry”, and

“surprise” from CK++ and “contempt” from CK+.

Cheeks&Eyes.As a complement to theCK-Mixed dataset, we build
another facial expression dataset focusing more on the eyes and

cheeks. We asked 50 volunteers to each act three expressions before

mobile phone cameras: closing eyes, raising eyes, and drumming

cheeks. Then, we remove the extremely blurred frames and crop

the frames to make the faces roughly centered. Unlike CK-Mixed,

we retain some periodic frames in the videos.

For testing, we collect wild neutral faces from the Internet under

various conditions of facial proportions, photo styles, etc.
Implementation Details.Our encoders and decoder are designed
as 8-layer neural networks with skip connections [20], allowing

low-level information to shortcut across the network. Both the local

and global discriminators are designed as three-layer convolutional

neural networks, and the discriminator regularizing the intensity

at is a three-layer perceptron. For the experiments on CK-Mixed,

we leave out 8 video clips (4 in gray-scale and 4 in RGB-scale) per

class for validation. For each category in Cheeks&Eyes, we use 10

video clips (5 males and 5 females) for validation. All other video

clips are used for training. For each video, we use the �rst frame

as the neural face and pair it with �ve randomly sampled frames

in training. We adopt instance normalization and set the video

batch size to 1 following [11]. Adam [12] is the chosen optimizer

with a learning rate 0.0002, beta1 0.5, and beta2 0.999. The weight

coe�cients for the loss terms in Eq.12 are set to 1, 1, 100, 10, 100,

respectively. For all the expressions of CK-Mixed and drumming

cheeks, we crop out the mouth region as the local patch of interest

in Eq. 7. Regarding raising eyes and closing eyes, we disregard this

loss as the subjects’ mouths almost keep stationary for them.

4.1 Comparison Results
4.1.1 State-of-the-art methods. We compare A�neGAN with sev-

eral state-of-the-arts: ConvLSTM [29], VideoGAN [26], the �ow-

grounded spatial-temporal (FGST)method [13], andGANimation [17].

For fair comparison, in ConvLSTM, we enhance the CovNet with

U-net [20] to improve the performance. For VideoGAN, we adopt

the conditional version of their o�cial implementation by gener-

ating videos conditioning on the �rst frame. As the LSTM and 3D

convolution implementations require a �xed-length sequence as

inputs, we uniformly sample/up-sample 9 frames from each original

video clips for ConvLSTM, VideoGAN, and FGST. In order to apply

GANimation to our setting of video prediction from a single image,

we pre-process the videos in the following way. We �rst align the

faces and then extract their AUs via OpenFace [2]. Furthermore,

in the prediction stage, we select the most expressive AU from the

training set as the label map of each target expression.

Figure 3: L2 loss between the generated frames and the neu-
tral face on the test set of “closing eyes’. Di�erent lines rep-
resent videos generated from di�erent test images.

4.1.2 �alitative Results. Fig. 4 compares our method with the

state-of-the-arts on the validation set of the “happy” category. It

is clear that the proposed A�neGAN produces the most realistic,

smooth, and consistent frame sequence. Some of the frames gen-

erated by ConvLSTM are blurry. VideoGAN performs the worst

and produces faces of a di�erent person, probably because it over-

�ts to the training set and fails to generalize to previously unseen

subjects. FGST’s results are better than VideoGAN’s due to the 3D

convolution over multiple optical �ows, but it generates distorted

images because the �ows extracted by SPyNet [18] are probably

not �ne-grained enough to capture facial changes (maybe other

methods like [6] can achieve better results). GANimation produces

images most comparable to ours, but the facial change is within a

much smaller range (e.g., the teeth cannot be observed).

To further evaluate the generalization capacity of our approach,

we try to generate facial expressions for images in test set crawled

from the Internet. As shown in Fig. 5, our approach still generates

satisfactory expressions. However, ConvLSTM, VideoGAN, and

FGST perform much worse due to the domain gap between the

training set and these Internet images. GANimation worked well

on CK-Mixed but herein fails to produce semantically meaningful

videos of “closing eyes”. This is because GANimation relies on AUs

extracted by Openface which, however, does not compute the AUs

for eyes movements. In sharp contrast to GANimation, our A�ne-

GAN is self-contained — without resorting to any additional tools

or annotations — and can automatically derive the expression inten-

sity. Fig. 6 shows that A�neGAN delivers consistent performances

on the Internet images in the test set for all the expressions, from an

extreme expression like “happy” to a modest one like “contempt”.

When a is close to 0 or 1, the generated frames may look a little

similar. However, Fig. 3 shows that for 10 images in “closing eyes”,

the l2 losses between the generated frames and the corresponding

neutral face increase as the intensity move from 0 to 1, indicating

that the frames are inherently di�erent and monotonic.
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4.1.3 �antitative Results. We also report quantitative results by

the Average Content Distance (ACD) [30] and user studies. ACD-I

measures the quality of facial identities by calculating the average

distance between predicted frames and the original input, while

ACD-C measures the content consistency by computing the aver-

age distance of all possible pairs of frames in a video. To better

evaluate the expression changes, we further propose ACD-G metric

by computing the average frame-to-frame distance between the

generated frames and the corresponding ground-truth ones. We

use OpenFace [1] to produce 128-dimensional feature vectors for

the video frames. All the ACD scores are calculated using the `2
distance upon the feature vectors. When OpenFace cannot recog-

nize any face from a generated frame — implying a bad prediction,

we sample a feature vector from the normal distribution N (0, 1).

Table 2 shows the overall comparison results on the validation

set. We also compute all ACD scores for the ground-truth videos

for reference. Note that the ACD scores are the lower, the better.

We can see that A�neGAN gives rise to much lower ACD scores
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Figure 6: The generated videos for all the seven categories on a previously unseen Internet image.

Table 1: Comparisons of AMT results between A�neGAN and baselines on CK-Mixed and Cheeks&Eyes.

Q1: “Which video represents # expres-

sion better?”

Happy Anger Surprise Contempt Raise

eyes

Drum

cheeks

Close

eyes

Mean

Preference ours over ConvLSTM 75.5% 73.7% 73.8% 65.6% 78.2% 74.8% 82.7% 74.9%

Preference ours over VideoGAN 77.8% 76.1% 81.6% 72.8% 75.4% 79.8% 80.2% 77.7%

Preference ours over FGST 72.4% 74.1% 77.8% 68.3% 88.8% 90.5% 85.8% 79.7%

Preference ours over GANimation 72.1% 66.2% 78.9% 57.9% 71.0% 74.2% 68.8% 69.9%

Q2: “Is this video real or fake?”

Mark real video as real video 81.5% 78.3% 80.8% 76.5% 83.3% 80.9% 84.0% 80.8%

Mark fake video as real video 50.6% 51.7% 43.5% 44.4% 69.6% 58.2% 61.5% 54.2%

Table 2: Generation quality comparison.

Methods ACD-I ACD-C ACD-G

ConvLSTM 1.31 1.38 1.33

VideoGAN 1.64 1.14 1.64

FGST 0.99 1.10 0.98

GANimation 0.35 0.25 0.47

Ours 0.31 0.29 0.39
Reference 0.29 0.28 0

than ConvLSTM, VideoGAN, and FGST and slightly higher scores

than the ground-truth reference. GANimation produces very low

ACD-C because it predicts almost constant frames for each video.

In addition to the ACD scores, we also run two user studies on

Amazon Mechanical Turk (AMT). In the �rst, we sample 50 pre-

dicted videos per expression for each method. We each time display

a video per method (�ve videos in total) of the same expression in

random order on the screen. Then, we ask 50 workers to choose

which one of the �ve videos best represents the expressions. As

shown in Table 1, the workers prefer our solution over all baselines,

especially on Cheeks&Eyes. For the second study, we conduct a

Turing test for each expression by randomly choosing 10 real videos

from the training set and 10 generated videos of the testing faces.

We shu�e these videos and assign each worker with 50 videos.

Workers are asked to decide whether the displayed video is real or

not. In Table 1, about 85% of the real videos are labeled as “real”,

verifying the reliability of the workers. As for the videos predicted

by A�neGAN, 54.2% of them are marked as real on average and,

in particular, 70% of the “raising eyes” videos fool the workers suc-

cessfully. Both studies demonstrate that A�neGAN can generate

more realistic and expressive videos for all these facial expressions.

4.2 Ablation Studies
On inferring the expression intensity by p(I0, It ). We have de-

rived an automatic approach to inferring the intensity at in Sec-

tion 3.1. Instead of using the particular formulation p(I0, It ), one



Figure 7: (a) Plain MLP is not as e�ective as the derived net-
work design (Eq. 7) for inferring the expression intensity.
(b) Comparison for results with/without adversary loss for a.
Left: qualitative results; right: the inferred a of groundtruth
frames. (c) Visualizations of gradients in the input layer for
E0 and E∆. (d) Generated expressions when only two frames
are remained in the training set. Upper: Ours; lower: FAN.

may wonder an alternative “black-box” neural network which takes

as input the concatenation of f
0
, f t , and f ∆. We contend that this

naive solution does not necessarily cover the formulation p(I0, It )
and, even if it does, it requires a massive dataset to learn. To verify

this, we instead train an ablated A�neGAN which uses a plain

MLP to estimate the intensity. Fig. 7(a) shows the results. Clearly,

the generated video by this ablated A�neGAN is non-monotonic,

indicating that the MLP fails to capture the expression intensity.

On the e�ect of the adversary loss for at . Recall that we apply
an adversary loss to constrain the intensity at to be close to [0, 1]

(cf. Eq. 11). Here, we justify its importance by removing it from our

overall objective function. Fig. 7(b) shows that the facial changes

are much small without this adversary loss. As our method can

infer the intensity itself, we further display the predicted values

of at by our method in Fig. 7(b). Obviously, without the adversary

loss, the inferred at is not monotonic and sometimes moves beyond

the range of [0,1]. In contrast, the intensity at estimated by the full

A�neGAN approach is reasonably within [0, 1].

What do the encoders learn? Our generator contains a basic

encoder E0 and a residual encoder E∆, as introduced in Sec. 3.1. To

gain insights about them, we visualize the gradients of the input

layers of them when the expression intensity is set to 1. Fig. 7(c)

shows a “happy” example. It shows that while the basic encoder E0
mostly captures the outline of the face (e.g., identity information),

the residual encoder E∆ focuses more on the active expression part

(e.g., the mouth area). These observations are consistent with our

design by which we expect E0 to model the neutral face and E∆ to

track the direction of expression change.

Incomplete, unordered, or periodic frames. As discussed in

Section 3, the mere annotation required for our approach is to select

a neutral face per training video. Indeed, A�neGAN can accept

incomplete, unordered, or periodic frames of facial expressions. This

property makes our method very �exible and more advantageous

than the closely related approach (FAN) [7], where both the neutral

and peak expressions are manually labeled and a linear change in

between is assumed. We compare A�neGAN with FAN under the

settings with these frames. First, for the incomplete setting, we

randomly select only two frames from each video. The intensity

of the second frame is labeled to 1 according to FAN. As shown in

Fig. 7(d), FAN fails to make reasonable intensity change, but our

approach still leads to satisfactory performance. Second, for the

unordered and periodic setting, we shu�e the frames except the

�rst for each video and also repeat each video for random times

to construct unordered and periodic videos. FAN fails to generate

meaningful expression as its assumption of linear intensity change

becomes fundamentally wrong. As a result, FAN also performs badly

on the Cheeks&Eyes dataset, which contains unordered training

frames. Nevertheless, our method can well handle these videos.

5 CONCLUSION
This paper proposes A�neGAN to enable controllable facial ex-

pression generation from a single neural face. The key advantage of

A�neGAN is that the expression intensity used for the expression

generation can be inferred automatically by an inverse formula-

tion to the a�ne transformation. We evaluate A�neGAN in two

expression datasets: CK-Mixed and Cheeks&Eyes. Both the qualita-

tive and quantitative results verify the e�ectiveness of our method.

To further justify the generation ability of A�neGAN, we collect

neural faces from the Web and construct a test set that exhibits a

clear domain gap to our training faces. The generated expressions,

beyond expectation, can fool more than 50% AMT workers in our

Turing test. Considerable ablation studies have also be performed

to reveal the robustness of our method. This method can be more

powerful; for example, if we select happiness as the source expres-

sion and neutral as the target, we can go from happy to neutral,

thus enabling face synthesis like happiness to anger.

Nowadays, GIF is a popular art form in online messaging and

social networks, which improve users’ experience dramatically.

A�neGAN can support people to produce expression GIFs 1) con-

veniently, as only one neural face is required in generation; 2)

creatively, as models for new expressions can be trained on easy-

to-gather datasets. For the future work, we will explore to apply

our method on other types of images, e.g., the action data.
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