Synthesized Policies for Transfer and Adaptation across Tasks and Environments

Hexiang Hu*1, Liyu Chen*1, Boqing Gong2, Fei Sha1,3

¹University of Southern California, ²Tencent Al Lab, ³Netfilx

Poster #155

Highlights:

- \clubsuit Study three progressively difficult transfer settings where an agent needs to transfer and adapt across both environments (ε) and tasks (τ) simultaneously.
- Novel architecture of policy and reward factorization and disentanglement objective.
 GridWorld Thor [1]
- ❖ We experiment on two simulators, and our approach has achieved
 - superior performances under different transfer settings

Problem Setting:

We consider adaption and transfer across environments and tasks simultaneously in Reinforcement Learning.

Goal: Learn $\mathcal{O}(|\mathcal{E}| + |\mathcal{T}|)$ combos and generalize to $|\mathcal{E}| \times |\mathcal{T}|$

- (a): Compositional generalization to novel combos
- (b) & (c): "Incremental transfer" or "Learn a big jump"

References:

- [1] Kolve, Eric, et al. "Al2-THOR: An interactive 3d environment for visual Al." arXiv preprint arXiv:1712.05474 (2017).
- [2] Barreto, André, et al. "Successor features for transfer in reinforcement learning." Advances in neural information processing systems. 2017.
- [3] Devin, Coline, et al. "Learning modular neural network policies for multi-task and multi-robot transfer." Robotics and Automation (ICRA), 2017, 2017 IEEE International Conference on. IEEE, 2017.

Main Idea: (1) Learn a policy basis Θ to compose (ε, τ) specific policies $U(e_{\varepsilon}, e_{\tau})$

(2) Learn low dimensional embeddings e_{ε} or e_{τ} for novel ε and τ

Experiments on GridWorld:

How many seen (ε, τ) pairs are needed to transfer well? 40% of the training (ε, τ) pairs can generalize

Does reinforcement learning help transfer?

Fine tuning with RL on training set helps transfer in test set!

Blind Agent: the agent can only see its own and treasures' position, but not the maze.

Results for Transfer Setting 2 & 3

Setting	Method	Q's ε , P's τ	P's ε , Q's τ	Q Pairs
Setting	MLP	13.8%	20.7%	6.3%
2	SynPo	50.5%	21.5%	13.5%
Setting	MLP	14.6%	18.3%	7.2%
3	SynPo	42.7%	19.4%	12.9%

Experiments on THOR [1]:

Results for Transfer Setting 1

Split	ModuleNet	MLP	MTL	SynPo
SEEN	51.5%	47.5%	52.2%	55.6%
UNSEEN	14.4%	25.8%	33.3%	35.4%