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Highlights:

*» Study three progressively difficult transfer settings
where an agent needs to transfer and adapt across both
environments (&) and tasks (t) simultaneously.

“* Novel architecture of policy and reward factorization and
disentanglement objective. GridWorld

<« We experiment on two simulators, @ i

and our approach has achieved
superior performances under different transfer settings

Thor [1]

Problem Setting:

We consider adaption and transfer across environments

and tasks simultaneously in Reinforcement Learning.
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(a) Transfer Setting 1 (c) Transfer Setting 3

Goal: Learn O(|€| 4+ |T]) combos and generalize to|£| x |T]|
(a): Compositional generalization to novel combos
(b) & (c): “Incremental transfer” or “Learn a big jump”

More about
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Disentanglement

Main Idea: (1) Learn a policy basis © to compose (&, 7) specific policies U (e, e )
(2) Learn low dimensional embeddings €< or €+ for novel € and t

Policy Synthesis: U(e, e,) = 2 a,(e., e;) 0, Policy Prediction: r,(a,s) x exp(@lU(e, e;)¢p, + b,)

k
V(ee, e;) = z Br(es er) - 0,  Reward Prediction: #,(s,a) = ¢IV(e. e, )¢, + b,
Disentanglement Objective: *

l. = —z log P(e|x;), with P(e|x;) x exp(g(x;)Te,) L, = —z log P(t|x;), with P(t|x.) o exp(h(x;) e,)
t t

Experiments on GridWorld:
Results for Transfer Setting 1
SynPo outperforms all
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(Imitation learning in all experiments by default)
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Blind Agent: the agent can only see its own  *°

‘and treasures’ position, but not the maze.  *°
L

NeurlPS
NETFLIX

How many seen (g, t) pairs are needed to transfer well?
40% of the training (&, 7) pairs can generalize

Does reinforcement learning help transfer?
Fine tuning with RL on training set helps transfer in test set!
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SynPo is less sensitive to
Imperfect perception.
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Experiments on THOR [1]:

Results for Transfer Setting 1

Split ModuleNet MLP MTL SynPo
SEEN 51.5% 47.5% 52.2% 55.6%
UNSEEN 14.4% 25.8% 33.3% 35.4%




