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Abstract

Gradient-based meta-learning first trains task-specific
models by an inner loop and then backpropagates meta-
gradients through the loop to update the meta-model. To
avoid high-order gradients, existing methods either take a
small number of inner steps or approximate the meta-updates
for the situations that the meta-model and task models lie in
the same space. To enable long inner horizons for more gen-
eral meta-learning problems, we instead propose an intuitive
teacher-student strategy. The key idea is to employ a stu-
dent network to adequately explore the search space of task-
specific models, followed by a teacher’s “leap” toward the
regions probed by the student. The teacher not only arrives
at a high-quality model but also defines a lightweight com-
putational graph for the meta-gradients. Our approach is
generic; it performs well when applied to four meta-learning
algorithms over three tasks: few-shot learning, long-tailed
object recognition, and adversarial blackbox attack.

1. Introduction

Humans can quickly learn the skills needed for new tasks
by drawing from a fund of prior knowledge and experience.
To grant machine learners this level of intelligence, meta-
learning studies how to leverage past learning experiences
to more efficiently learn for a new task [48]. A hallmark
experiment design provides a meta-learner a variety of few-
shot learning tasks (meta-training) and then desires it to solve
previously unseen and yet related few-shot learning tasks
(meta-test). This design enforces “learning to learn” because
the few-shot training examples are insufficient for a learner
to achieve high accuracy on any task in isolation.

Recent meta-learning methods focus on deep neural net-
works. Some learn recurrent neural networks as an update
rule to a model [36, 2]. Some transfer attention schemes
across tasks [30, 49]. Gradient-based meta-learning gains
momenta recently following the seminal work [14]. It is
model-agnostic meta-learning (MAML), learning a global
model initialization from which a meta-learner can quickly
derive task-specific models by using a few training examples.

In its core, MAML is a bilevel optimization problem [10].

The upper level searches for the best global initialization,
and the lower level optimizes individual models, which all
share the common initialization, for particular tasks sampled
from a task distribution. This problem is hard to solve. [14]
instead propose a “greedy” algorithm, which comprises two
loops. The inner loop samples tasks and updates the task-
specific models by k steps using the tasks’ training examples.
The k-step updates write a differentiable computation graph.
The outer loop updates the common initialization by back-
propagating meta-gradients through the computation graph.
This method is “greedy” in that the number of inner steps
is often small (e.g., k = 1). The outer loop takes actions
before the inner loop sufficiently explores its search space.

This “greedy” algorithm is due to practical constraints
that backpropagating meta-gradients through the inner loop
incurs high-order derivatives, big memory footprints, and the
risk of vanishing or exploding gradients. For the same reason,
some related work also turns to greedy strategies, such as
meta-attack [13] and learning to reweigh examples [38].

To this end, two questions arise naturally. Would a less
greedy gradient-based meta-learner (say, k>10 inner steps)
achieve better performance? How to make it less greedy?

Some first-order algorithms [14, 32, 15] have provided an
affirmative answer to the first question above. [35] proposed
a less “greedy” MAML by regularizing the inner loop. How-
ever, they are highly tailored in that the meta-model and task
models lie in the same space, preventing them from tackling
other meta-learning problems, for example, the long-tailed
classification described later.

To answer the questions for more general meta-learning
scenarios, we provide some preliminary results by introduc-
ing a lookahead optimizer [55] into the inner loop. It can
be viewed as a teacher-student scheme. We use a student
neural network to explore the search space for a given task
adequately (by a large number k of updates), and a teacher
network then takes a “leap” toward the regions visited by
the student. As a result, the teacher network not only ar-
rives at a high-performing model but also defines a very
lightweight computational graph for the outer loop. In con-
trast to the traditionally “greedy” meta-learning framework
used in MAML [14], meta-attack [13], learning to reweigh
examples [38], etc., the teacher is “lazy”. It sends a student
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to optimize for a task up to many steps and moves only once
after that.

Our approach improves the gradient-based meta-learning
framework rather than a single algorithm. Hence, we eval-
uate it on different methods and tasks, including MAML
and Reptile [32] for few-shot learning, a two-component
weighting algorithm [20] for long-tailed classification, and
meta-attack [13]. Extensive results provide an affirmative
answer to the first question above: long-horizon exploration
in the inner loop improves a meta-learner’s performance. We
expect our approach, along with the compelling experimen-
tal results, can facilitate future work to address the second
question above.

2. Related Work
Meta-learning has been a long-standing sub-field in ma-

chine learning [40, 45, 31]. Early approaches update a
model’s parameters by training a meta-learner [4, 5, 41].
This has been well studied in optimizing neural networks,
and one such family of meta-learning learns an optimizer [36,
26, 2]. A specialized neural network takes gradients as input
and outputs an update rule for the learner. In addition to the
update rule, [36] also learn the weight initialization for few-
shot learning. Finally, there are several approaches [29, 52]
for training generic optimizers that can be applied broadly
to different neural networks and datasets.

Under the context of few-shot learning, another fam-
ily of meta-learning involves metric-learning based meth-
ods [49, 43, 30, 22, 33], which learn a metric space to benefit
different few-shot learning tasks. The goal is to find the
similarity between two samples regardless of their classes
using some distance metric so that the similarity function
can be used to classify the unseen classes at the test stage.
Some recent studies along this line include Matching Net-
works [49], which employs the cosine similarity, Prototyp-
ical Networks [43], which uses the Euclidean distance to
compute the similarity, Relation Network [44], which uses
a relation module as the similarity function, ridge regres-
sion [6], and graph neural networks [39].

More recently, gradient-based meta-learning gains its
momentum, and a variety of methods have been proposed
in this vein. The most notable one among them might
be MAML [14], where the goal is to learn the network
weight initialization so that it can adapt to unseen tasks
rapidly. There have been extensions to improve MAML.
Meta-SGD [27] learns the learning rates along with the
weight initialization. Regularization techniques [54, 21]
are introduced to MAML to mitigate over-fitting. [34] pre-
conditions on the gradients in the inner loop by learning a
curvature. Despite MAML’s popularity, it is still computa-
tionally expensive and consumes large memory due to the
computation of high-order derivatives. The authors show
that the first-order approximation, which neglects the gradi-

ents of the inner loop during meta-optimization, performs
about the same as the original MAML. Another first-order
meta-learning method is Reptile [32], which decouples the
inner and outer optimization steps. iMAML [35] provides
an approximate solution for meta-gradients by using an al-
gorithm based on conjugate gradients, and its low-level op-
timization is similar to Meta-MinibatchProx [56]. The idea
is to add an `2 regularizer in the inner loop, allowing the
updated parameters close to the initial parameters. Similar to
iMAML, [28, 3] provide approximate solutions for optimiz-
ing hyperparameters and simulator parameters respectively.

3. “Greedy” Gradient-Based Meta-Learning
We first review gradient-based meta-learning from the

perspective of “search space carving”.
Notations. Let PT denote a task distribution. For each

task drawn from the distribution T ∼ PT , we have a train-
ing set Dtr and a validation set Dval, both in the form of
{(x1, y1), (x2, y2), · · · } where xm and ym are respectively
an input and a label. We learn a predictive model for a task
by minimizing the empirical loss LTDtr

(φ) over the training
set while using the validation set to choose hyper-parameters
(e.g., early stopping), where φ collects all trainable parame-
ters of the model. Similarly, we denote by LTDval

(φ) the loss
calculated over the validation set.

Meta-learning as “space carving”. Instead of focusing
on an isolated task, meta-learning takes a global view and in-
troduces a meta-model, parameterized by θ, that can improve
the learning efficiency for all individual tasks drawn from
the task distribution PT . The underlying idea is to derive
a task-specific model φ from not only the training set Dtr
but also the meta-model θ, i.e., φ ∈M(θ,Dtr). We refer to
M(θ,Dtr) the “carved” search space for the task-specific
model φ, where the “carving” function is realized as an at-
tention module in [49, 30], as a conditional neural process
in [17, 18], as a gradient-based update rule in [14, 34, 27, 32],
and as a regularized optimization problem in [35, 56].

An optimal meta-model θ∗ is supposed to yield the best
task-specific models in expectation,

θ∗ ← argmin
θ

ET ∼PT ,Dval∼T LTDval
(φ∗(θ))

subject to φ∗(θ)← arg min
φ∈M(θ,Dtr)

LTDtr
(φ).

(1)

One can estimate the optimal meta-model θ∗ from some
tasks and then use it to “carve” the search space,M(θ∗,Dtr),
for novel tasks’ models.

Gradient-based meta-learning. One of the notable
meta-learning methods is MAML [14], which uses a
gradient-based update rule to “carve” the search space for a
task-specific model,

MMAML(θ,Dtr) := {φ0 ← θ} ∪ {φj |φj ← φj−1

−α∇φLTDtr
(φj−1), j = 1, 2, · · · , k}

(2)
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where the meta-model θ becomes an initialization to the task-
specific model φ0, the other candidate models φ1, · · · , φk
are obtained by gradient descent, and α > 0 is a learning rate.
Substituting it into equation (1), φk ∈ MMAML(θ,Dtr) is
naturally a solution to the lower-level optimization problem,
and MAML solves the upper-level optimization problem by
meta-gradient descent,

θ ← θ − βET ∼PT ,Dval∼T∇θLTDval
(φk(θ)), (3)

where β is a learning rate, and φk(θ) indicates the depen-
dency on the meta-model θ. The meta-gradient must back-
propagate through the chain of updates in eq. (2), which
has to be short (e.g., k = 1) to avoid big memory footprints,
high-order derivatives, and the risk of vanishing or exploding
gradients.

We say MAML is “greedy” in that it descends meta-
gradients for the meta-model θ before it runs adequate up-
dates to the task-specific model φ. As an increasing number
of works adopt the gradient-based “search space carving”
for task-specific models [27, 35, 34, 16, 53], they also bear
greedy algorithms. Relaxing the greedy strategy may benefit
not one, but a variety of, high-order meta-learning methods.

4. A “Lazy” Approach to Gradient-Based
Meta-Learning

In this section, we describe a “lazy” meta-learning ap-
proach, which is readily applicable to different gradient-
based meta-learning algorithms. We first describe the general
approach as an improvement to MAML and then customize
it for few-shot learning, long-tailed classification, and meta-
attack.

4.1. General Approach

Given a meta-model θ, we “carve” the search space for
task-specific models φ ∈ M(θ,Dtr) by a teacher-student
scheme. The key idea is to let a student explore the search
space adequately using the training set of a task-specific
model without worrying the length of the update chain be-
cause a teacher will examine the explored regions by the
student, followed by a one-step “leap”. Hence, one can
update the meta-model by backpropagating meta-gradients
through the teacher’s “leap”, not the student’s update chain
(ignoring that the chain starts from the meta-model). Figure 1
illustrates the main idea.

An exploratory student acts exactly the same as the
gradient-based updates in MAML except that it explores
the feasible space by a large number of steps (k > 10),
resulting in k + 1 checkpoints of a task-specific model φ ∈
MMAML(θ,Dtr) = {φj , j = 0, · · · , k}. It is clear from
Section 3 that we cannot backpropagate the meta-gradients
through the long chain of checkpoints, φ0, · · · , φk, made by
the exploratory student.

A lazy teacher sits at the initialization φ0 = θ until the
student stops. It then takes a “leap” towards the region
explored by the student. The teacher essentially defines
another “carved search space” for the task-specific model φ,

MLAZY(θ,Dtr) := γθ + (1− γ)Rk−b+1,··· ,k (4)

where γ ∈ [0, 1]. The region Rk−b+1,··· ,k is a convex hull
of the last b checkpoints the student visited:

Rk−b+1,··· ,k := αk−b+1φk−b+1 + αk−b+2φk−b+2+

· · ·+ αkφk,
(5)

where the coefficients {α} are non-negative and their sum
equals 1, i.e., αk−b+1+ · · ·+αk = 1. The last b checkpoints
presumably cover a high-quality task-specific model φ by
a better chance than the first few checkpoints. We shall
experiment with b = 3 and b = 1.

Any task-specific model φ in this “lazy” space
MLAZY(θ,Dtr) is determined by the hyper-parameters γ
and αk−b+1, · · · , αk, over which we conduct a grid search
to minimize the validation loss LTDval

(φ). This is similar in
spirit to meta-SGD [27], which uses the validation data to
search for the learning rates.

Denote by γ̂θ+(1−γ̂)φ̂ the task-specific model as a result
of the grid search. Notably, it is only one hop away from
the meta-model θ, making it easy to compute meta-gradients.
Concretely, the meta-gradient descent for the meta model θ
becomes θ ← θ−βET ∼PT ,Dval∼T∇θLTDval

(γ̂θ+(1−γ̂)φ̂),
which is apparently more manageable than the gradients in
eq. (3) when k > 1.

Algorithm 1 “Lazy” Meta-Learning
Require: A distribution over tasks PT
Require: Learning rates η, β
Ensure: The meta model θ

1: Randomly initialize the meta-model θ
2: while not done do
3: Sample a batch of tasks {T i ∼ PT }
4: for all {T i} do
5: Sample data Dtr and Dval for Ti
6: φi,0 ← θ
7: for j = 1, 2, · · · , k do //student
8: φi,j ← φi,j−1 − η∇φLTiDtr

(φi,j−1)
9: end for

10: Grid-search MLAZY(θ,Dtr) such that LTiDval
is

minimized at γ̂iθ + (1− γ̂i)φ̂i //teacher
11: φi(θ)← γ̂iθ + (1− γ̂i)φ̂i //teacher
12: end for
13: θ ← θ − β∇θ

∑
i L
Ti
Dval

(φi(θ))
14: end while

Algorithm 1 presents our “lazy” approach in detail. In
the outer while-loop, we sample a batch of tasks {Ti} (Line
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Figure 1. To compute the meta-gradients ∇θ

∑
i L

Ti
Dval

(φi(θ)), MAML [14] differentiates through the inner updates, the implicit
MAML [35] approximates local curvatures, while we differentiate through the “lazy” teacher’s one-step “leap”. The exploratory student
may make many steps of inner updates before the teacher’s “leap”.

3, or L3) and use them to make a gradient update to the
meta-model θ (L13). All task-specific models {φi,0} are
initialized to the current meta-model θ (L6). For each task
Ti, the student first runs gradient descent with respect to the
task-specific model φi up to k steps (L8), and the teacher
then takes a “leap” from the initial meta-model θ according
to the checkpoints visited by the student (L10–11).

Remarks. Our “lazy” teacher is motivated by the looka-
head optimizer [55]. They have some key differences as
follows due to the meta-learning setup. We initialize multi-
ple task-specific models by the meta-model. Moreover, we
dynamically choose the “leap” rate γ by a validation set.
Finally, the validation data allows us to take advantage of not
one checkpoint, but a region around the checkpoints visited
by the student.

Like Reptile, our approach allows the inner loop to make
many steps of updates to task-specific models. Moreover,
we share the same update rule as Reptile by the end of
the many-step exploration. However, we apply that rule to
the task-specific models, while Reptile essentially uses it
to update the meta-model. Unlike Reptile, we use meta-
gradients to update the meta-model. This difference is subtle
and vital, making it straightforward to apply our approach
to the two-component weighting algorithm for long-tailed
classification (and other meta-like algorithms) but unclear
how to do it for Reptile.

We share the same goal, to make MAML less “greedy”,
as the recently proposed implicit gradients (iMAML) [35].
iMAML changes the lower-level problem in eq. (1) to an `2-
regularized problem, which lends an analytical expression
for the meta-gradient. But it is expensive to compute and
has to be approximated by a conjugate gradient algorithm.
The `2 regularization also falls short in capturing structural
relations between a meta-model and task-specific models.

4.2. Few-Shot Learning, Long-Tailed Classification,
and Meta-Attack

Since the “lazy” teacher does not change the innermost
loop of gradient-based meta-learning — it instead “leaps”
over the chain of updates to the task-specific model φ, we
can apply it to different algorithms. We evaluate it on few-
shot learning, long-tailed classification, and meta-attack, in
which meta-learning based methods have led to state-of-the-
art results.

Few-shot learning in this paper concerns an N -way-K-
shot classification problem. To customize Algorithm 1 for
this problem, we randomly select N classes for each task Ti
and then draw from each class K + 1 examples with labels,
K of which are assigned to the training set Dtr and one is
to the validation set Dval. Besides, we choose the hyper-
parameter γi by using the task-specific model’s classification
accuracy on the validation set, instead of the loss in L10,
Algorithm 1.

There is an interesting “trap” in few-shot learning, iden-
tified as over-fitting by memorization [53]. The tasks {Ti}
drawn from a distribution PT are supposed to be i.i.d., but
they could be correlated in the following scenario. Suppose
there exists a global order of all classes. If we maintain this
order among the N classes in each task, the meta-model
could over-fit the tasks seen during meta-training by memo-
rizing the functions that solve these tasks, and it would fail to
generalize to new tasks. Hence, it is important to randomly
shuffle the N classes every time we sample them for a task
(e.g., “dogs” and “cats” are respectively labeled as 0 and 1
in a two-way classification task, and yet they are shuffled to
1 and 0 in another two-way task).

We will empirically show that our approach is less prone
to over-fitting than MAML even without class shuffling.
A possible reason is that we use longer chains of updates
(φ0, · · · , φk, k > 10) to learn the functions that solve the
individual tasks, making them harder to memorize.

Long-tailed classification emerges as an inevitable chal-
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lenge as object recognition makes progress toward large-
scale, fine-grained classes [47, 51], which often exhibit a
long-tailed distribution. To uplift infrequent classes, [20]
propose to weigh each training example by two components,
a fixed component wy to balance different classes [11] and a
trainable component εi. We improve their learning method
by a “lazy” teacher, as described in Algorithm 2. It alterna-
tively optimizes the per-example weight εi (using a balanced
validation set) and a recognition network θ (using the long-
tailed training set), in the same spirit as meta learning (cf.
Algorithm 1 vs. L5-12 in Algorithm 2). We insert a “lazy”
teacher model to L6, let it take a “leap” in L12, and then
backpropagate the gradient with respect to the per-example
weight εi through the “leap”.

Algorithm 2 “Lazy” Two-Component Weighting for Long-
Tailed Recognition
Require: A training set Dtr whose class frequency is long-

tailed, a balanced validation set Dval
Require: Class-wise weights {wy} estimated by using [11]
Require: Learning rates η, τ , pre-training steps t1, fine-

tuning steps t2
1: Train a recognition network, parameterized by θ, for t1

steps by a standard cross-entropy loss
2: for t = t1 + 1, · · · , t1 + t2 do
3: Sample a mini-batch B from the training set Dtr
4: Set εi ← 0,∀i ∈ B, and denote by ε := {εi, i ∈ B}
5: Compute LB(θ, ε) := 1

|B|
∑
i∈B(wyi + εi)Li(θ)

//Li is a cross-entropy over the i-th input
6: Update θ̃(ε)← θ − η∇θLB(θ, ε) // The “lazy”

teacher, which depends on ε
7: Initialize a student model by setting φ0 ← θ̃(ε)
8: for j = 1, 2, ..., k do
9: Update the student model by gradient descent
φj ← φj−1 − η∇φLB(φj−1, ε)

10: end for
11: Grid search for γ s.t. the teacher’s “leap”, γθ̃(ε) +

(1− γ)φk, yields high accuracy on Dval
12: Update ε← ε− τ∇εLDval

(γθ̃(ε) + (1− γ)φk)
13: Compute LB(θ, ε) (cf. Line 5) and update θ ← θ −

η∇θLB(θ, ε)
14: end for

Meta-attack [13] is a query-efficient blackbox attack al-
gorithm on deep neural networks. Recent work has shown
that one can manipulate an image recognition network’s pre-
dictions by adding very small perturbations to benign inputs.
However, if the network’s architecture and weights are un-
known (blackbox), it takes a large number of queries into the
network to find a valid adversarial example. To improve the
query efficiency, [13] propose to learn a meta-model from
many whitebox neural networks and then generalize it to
blackbox attacks. They train this meta-model by using the
same meta-learning framework as Algorithm 1. Therefore,

it is straightforward to improve their inner loop by our “lazy”
teacher; we postpone the detailed algorithm to supplemen-
tary materials.

5. Experiments
We evaluate the “lazy”, long-horizon meta-learning ap-

proach by plugging it into different algorithms with appli-
cations to few-shot learning, long-tailed recognition, and
meta-attack.

5.1. Few-Shot Learning

We experiment with four datasets for few-shot learning:
Omniglot [24], MiniImageNet [50], TieredImageNet [37],
and CIFAR-FS [6]. The experiment protocols and implemen-
tation details largely follow MAML [14] and Reptile [32].
Please refer to supplementary materials for more details.
Table 1. Our approach applied to MAML and Reptile for five-
way few-shot classification on MiniImageNet (Accuracy ± 95%
confidence interval over 2000 runs)

Method MiniImageNet

1-shot 5-shot

MAML [14] 48.70 ± 1.84 63.11 ± 0.92
“Lazy” MAML (b = 1) 48.26 ± 1.78 64.13 ± 1.90
“Lazy” MAML (b = 3) 48.17 ± 1.84 63.73 ± 1.10

Reptile [32] 49.97 ± 0.32 65.99 ± 0.58
“Lazy” Reptile (b = 1) 51.50 ± 1.00 67.22 ± 0.97
“Lazy” Reptile (b = 3) 52.67 ± 1.01 68.77 ± 0.98

Our approach permits long-horizon inner updates and in-
volves a convex hull of the last few checkpoints. In Table 1,
we first experiment with the last b=3 and b=1 checkpoints.
We test them with two representative meta-learning algo-
rithms: MAML (cf. Algorithm 1) and Reptile (replacing
Line 13 (L13) in Algorithm 1 with θ ← θ−β

∑
i(θ−φi(θ))).

The intervals are 0.05 in the grid search (L10), and the search
range for the learning rate γ is between 0.75 and 0.95.

Table 1 shows that there is no significant difference be-
tween b = 3 and b = 1, so we shall employ b = 1 for the
remaining experiments. Moreover, the “lazy” variation im-
proves the vanilla Reptile, but not MAML, probably because
the five-way one/five-shot learning is too simple for MAML
to take advantage of the long-horizon inner updates. We next
study many-way few-shot learning tasks, which are arguably
more complex.

5.1.1 MAML vs. “Lazy” MAML for many-way few-
shot learning

We switch to the TieredImageNet dataset since there are only
20 classes in MiniImageNet’s meta-test set. The left panel of
Figure 2 shows the results of MAML, FOMAML and “Lazy”
MAML for N -way-five-shot learning, where N varies in
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Figure 2. Left: Mean Accuracy (%) for N -way-five-shot classification on TieredImageNet. Right: Mean Accuracy (%) for 20-way-one-shot
non-i.i.d. [53] classification tasks on Omniglot.

{5, 20, 30, 50}, and the student runs for k = 10, 15, 20, 20
inner steps, respectively. The “lazy” variation is on par with
MAML for the five-way classification, and it outperforms
MAML, and FOMAML for 20-way, 30-way, and 50-way
five-shot classifications. This trend indicates that the many-
way few-shot learning problems desire more inner updates to
the task-specific models, amplifying the benefit of the “lazy”
teacher.

5.1.2 Many-shot Classification

The Figure 3 shows the results of MAML and “Lazy”
MAML for five-way-K-shot learning on MiniImageNet.
We vary K in {1, 5, 20, 50} and let the student run for
k = 10, 15, 15, 20 steps, respectively. Under the 1-shot
and 5-shot settings, our approach is comparable to MAML,
but it significantly outperforms MAML for 20-shot and 50-
shot classifications. This trend indicates that more training
data desires more steps of exploration for a task-specific
model and hence magnifies the benefit of our teacher-student
scheme introduced to MAML.
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Figure 3. Mean Accuracy (%) for five-way K-shot classification
on MiniImageNet.

5.1.3 “Lazy” MAML is less prone to over-fitting by
memorization than MAML

The right panel of Figure 2 shows some 20-way-one-shot
classification results on Omniglot when we learn from
non-i.id. tasks, i.e., by maintaining a global order of all
training classes. This global order creates a shortcut for

meta-learning methods; they may memorize the order from
the meta-training tasks and fail to generalize to meta-test
tasks [53]. We can see that the “lazy” teacher boosts MAML
by a large margin and outperforms TAML [21], indicating
that it is less prone to over-fitting by memorization. A plau-
sible reason is that the k = 15 steps taken by the exploratory
student make it harder to memorize than the one-step update
in MAML or TAML.

5.1.4 Five-way-few-shot learning

We compare our approach with state-of-the-art meta-learning
methods for five-way few-shot learning problems on four
datasets. The results are shown in Tables 2 for MiniIma-
geNet and TieredImageNet . For our own approach, we
study both the MAML-style update to the meta-model (ours
(MAML), L13 in Algorithm 1) and the Reptile-style [32] up-
date (ours (Reptile), replacing Line 13 (L13) in Algorithm 1
with θ ← θ − β

∑
i(θ − φi(θ))) for MiniImageNet and

TieredImageNet. Batch normalization with test data yields
about 2% improvement over the normalization with the train-
ing data only, and we report the results of both scenarios.

It can be seen that our results are better than or compa-
rable with those of the competing methods. In general, the
improvements by our teacher-student scheme are more sig-
nificant on 5-shot settings than on 1-shot settings, verifying
the trend in Section 5.1.1 that more training data can better
leverage the exploratory student in our method. Besides,
ours (Reptile) outperforms ours (MAML) probably for two
reasons. One is that ours (Reptile) uses more than k shots
of training examples per class for a k-shot learning problem
during meta-training, following the experiment setup of Rep-
tile [32]. The other is that the second-order gradients in ours
(MAML) make the training procedure less stable than Rep-
tile. We hypothesize that a many-shot setting would be less
sensitive to both factors. Indeed, we verified this hypothesis
by another five-way-50-shot learning experiment with ours
(Reptile), which yields 76.17 ± 0.32% on MiniImageNet
and is lower than 78.54± 0.70 by ours (MAML).
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Table 2. Five-way few-shot classification accuracies (%) on MiniImageNet and TieredImageNet. The ± shows 95% confidence intervals
computed over 2000 tasks.

Method BN w/ Mini-ImageNet TieredImageNet

Test 1-shot 5-shot 1-shot 5-shot

MAML [14] 7 46.21 ± 1.76 61.12 ± 1.01 49.60 ± 1.83 66.58 ± 1.78
MAML [14] 3 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 69.60 ± 1.73
Meta-Curvature [34] 3 48.83 ± 1.80 62.63 ± 0.93 50.30 ± 1.99 66.14 ± 0.95
iMAML [35] 3 49.30 ± 1.88 63.47 ± 0.90 51.51 ± 1.80 69.92 ± 1.70
Ours (MAML) 3 48.26 ± 1.78 64.13 ± 1.90 51.03 ± 1.70 70.67 ± 1.72

FOMAML [14] 7 45.53 ± 1.58 61.02 ± 1.12 48.01 ± 1.74 64.07 ± 1.72
Reptile [32] 7 47.07 ± 0.26 62.74 ± 0.37 49.12 ± 0.43 65.99 ± 0.42
Meta-MinibatchProx [56] 7 47.81 ± 1.00 63.18 ± 1.00 49.97 ± 0.93 66.60 ± 0.91
Ours (Reptile) 7 48.14 ± 0.94 64.64 ± 0.92 51.15 ± 0.95 68.84 ± 0.90

FOMAML [14] 3 48.07 ± 1.75 63.15 ± 0.91 50.12 ± 1.82 67.43 ± 1.80
Reptile [32] 3 49.97 ± 0.32 65.99 ± 0.58 51.34 ± 0.4 68.73 ± 0.40
Meta-MinibatchProx [56] 3 50.08 ± 1.00 66.28 ± 0.98 53.71 ± 1.04 69.78 ± 0.95
Ours (Reptile) 3 51.50 ± 1.00 67.22 ± 0.97 54.41 ± 1.00 72.21 ± 0.94

Table 3. Five-way few-shot classification accuracies (%) on Omniglot and CIFAR-FS. The ± shows 95% confidence intervals computed
over 1000 tasks.

Method BN w/ Omniglot CIFAR-FS

Test 1-shot 5-shot 1-shot 5-shot

MAML [14] 3 98.70 ± 0.40 99.90 ± 0.10 56.50 ± 1.90 70.50 ± 0.90
iMAML [35] 3 99.16 ± 0.35 99.67 ± 0.12 - -

Reptile [32] 7 95.39 ± 0.09 98.90 ± 0.10 53.12 ± 1.34 69.40 ± 1.30
Ours (Reptile) 7 95.44 ± 0.57 98.92 ± 0.29 54.64 ± 1.30 70.56 ± 1.20

FOMAML [14] 3 98.30 ± 0.50 99.20 ± 0.20 55.6 ± 1.88 69.52 ± 0.91
Reptile [32] 3 97.68 ± 0.04 99.48 ± 0.06 57.50 ± 0.45 71.88 ± 0.42
Ours (Reptile) 3 98.20 ± 0.38 99.70 ± 0.16 59.36 ± 1.44 74.90 ± 1.28

The results on Omniglot and CIFAR-FS are reported in
Table 3. We only report ours (Reptile) due to its low compu-
tation cost. It can be seen that our results are better than or
comparable with those of the competing methods.

In Appendix A, we present more results of the few-shot
learning. Section A.5 investigates the proposed “lazy” ap-
proach with Reptile-style update for N -way-five-shot learn-
ing on TieredImageNet. Section A.4 further compares
MAML and “lazy” MAML by their computation memory
costs.

5.2. Long-Tailed Classification

Following the experiment setup in [11] and [20], we use
the CIFAR-LT-100 dataset [11] to compare our Algorithm 2
with several long-tailed recognition methods. [11] created
multiple long-tailed datasets by removing training exam-
ples from CIFAR-100 [23] according to different power law
distributions. In each version, we compute an imbalance
factor as the ratio between the sizes of the head class and

the tail class. We run k = 5 steps in the innermost loop of
Algorithm 2.

Table 4 shows the test errors (%) under different imbal-
ance factors. We can see that our teacher-student scheme
boosts the original two-component weighting approach [20]
under all the imbalance factors. The results are especially
interesting in that Algorithm 2 is not exactly a meta-learning
method, though it shares the same framework as the gradient-
based meta-learning due to the two nested optimization loops.
Besides, compared with the other competing methods, our
results establish a new state of the art for the long-tailed
object recognition.

5.3. Meta-Attack

We evaluate the “lazy” meta-attack on MNIST [25] and
CIFAR-10 [23]. We follow [13] for the experiment setup
and all training details, including the network architectures
used to generate gradients for input images, the attack mod-
els, meta-attack models, and evaluation metrics for both the

6583



Table 4. Test top-1 errors (%) of ResNet-32 on CIFAR-LT-100 under different imbalance settings.

Method ↓ Imbalance factor→ 200 100 50 20

Standard cross-entropy training 65.16 61.68 56.15 48.86
Class-balanced cross-entropy training [11] 64.30 61.44 55.45 48.47
Class-balanced fine-tuning [12] 61.78 58.17 53.60 47.89
Learning to reweight [38] 67.00 61.10 56.83 49.25
Meta-weight [42] 63.38 58.39 54.34 46.96

Two-component weighting [20] 60.69 56.65 51.47 44.38
Lazy two-component weighting (ours) 58.67 53.46 48.24 43.68

Table 5. Untargeted adversarial attack results on MNIST and CIFAR10. We achieve comparable success rates and average `2 distortions
with other methods by using a smaller number of queries.

Dataset / Target model Method Success Rate Avg. `2 Avg. Queries

MNIST / Net4

Zoo [8] 1.00 1.61 21,760
Decision boundary [1] 1.00 1.85 13,630
Opt-attack [9] 1.00 1.85 12,925
AutoZoom [46], 1.00 1.86 2,412
Bandits [19] 0.73 1.99 3,771

Meta-attack [13] 1.00 1.77 749
Lazy meta-attack (ours) 1.00 1.65 566

CIFAR10 / Resnet18

Zoo [8] 1.00 0.30 8,192
Decision boundary [1] 1.00 0.30 17,010
Opt-attack [9] 1.00 0.33 20,407
AutoZoom [46] 1.00 0.28 3,112
Bandits [19] 0.91 0.33 4,491
FW-black [7] 1.00 0.43 5,021

Meta-attack [13] 0.94 0.34 1,583
Lazy meta-attack (ours) 0.98 0.45 1,061

datasets, to name a few. The learning rates in the inner and
outer loops are both 0.01. We let the student run k = 8
and k = 10 steps in the innermost loop for MNIST and
CIFAR-10, respectively. Table 5 shows the results of un-
targeted attack, namely, the attack is considered successful
once it alters the recognition network’s prediction to any
incorrect class. Appendix B includes the results of targeted
attack. In addition to the original meta-attack [13], Table 5
also presents several existing blackbox attack methods for
comparison. We can see that meta-attack and our “lazy”
meta-attack yield about the same success rates as the other
blackbox attacks. The second-to-the-right column is about
the average `2 distortion an attacker makes to an input, the
lower the better. The rightmost column is about the number
of queries an attacker makes into the recognition network, the
lower the better. The “lazy” meta-attack is able to achieve
comparable success rates and `2 distortion rates with the
other methods yet by using a smaller number of queries.
Both meta-attack and its “lazy” version significantly out-
perform the other methods in terms of the query efficiency,

indicating the generalization capability of the meta-attack
model from known whitebox neural networks to unknown
blackbox networks.

6. Conclusion

We propose a teacher-student scheme for the gradient-
based meta-learning algorithms to allow them run more steps
of inner updates to task-specific models while being immune
to the risk of vanishing or exploding gradients. The student
explores the tasks-specific model’s feasible space up to many
steps, and the “lazy” teacher takes a one-step “leap” towards
the region explored by the student. As a result, the teacher
defines a lightweight computation graph and yet it takes
advantage of the adequately explored checkpoints by the
student. This approach is generic; we apply it to different
problems, include few-shot learning, long-tail recognition,
and meta-attack and various meta-learning methods. Exper-
iments verify the benefit of long-horizon inner updates in
gradient-based meta-learning.
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