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In this Supplementary Material, we provide extra de-
tails on the following:

• Sec. A: proof of Theorem 1 in the main text. We
prove that the new target distribution is closer to
the source distribution than the original one, after
adding landmarks to the target domain.

• Sec. B: results on object recognition accuracies.
Expanding what is reported in section 3.1 of
the main text, we report additional results on
a variation of GFK (Gong et al., 2012), choos-
ing landmarks with random selection (with stan-
dard errors reported), and results from applying
DASVM, a transudtive-style domain adaptation
technique (Bruzzone & Marconcini, 2010).

• Sec. C: more detailed analysis. Expanding what is
reported in section 3.1.2 of the main text, we pro-
vide additional analysis on the effect of selecting
landmarks.

A. Proof of Theorem 1 in the main text

The proof is straightforward, appealing to the convex-
ity of KL-divergence on its argument. Specifically,

KL(PS(X)‖QT (X)) = KL(PS(X)‖(1− µ)PT (X) + µPS(X))
(1)

≤ (1− µ)KL(PS(X)‖PT (X)) + µKL(PS(X)‖PS(X))
(2)

= (1− µ)KL(PS(X)‖PT (X))
(3)

≤ KL(PS(X)‖PT (X)) (4)

The last step follows from the fact that µ ≤ 1.

We can also assume a slightly more general model and
prove similar results. Suppose the original target dis-
tribution is PT (X) = αPS(X) + (1 − α)PO(X) where
PO(X) is a mixture component that is unique to the
target domain.

After adding the landmarks, suppose the new target
distribution is QT (X) = βPS(X)+(1−β)PO(X) with
α ≤ β. Then, similarly, we have

KL(PS(X)‖QT (X)) ≤ KL(PS(X)‖PT (X)) (5)

The proof is as straightforward as the Theorem 1.
In fact, we recognize QT (X), a more skewed binary
source, as a concatenation of a less skewed binary
source PT (X) with a bit-flipping binary symmetric
channel with transition probability ǫ = (β − α)/(1 −
α) ∈ [0, 1]. Namely,

QT (X) = ǫPS(X) + (1− ǫ)PT (X) (6)

Applying Theorem 1, we arrive immediately at the last
inequality.
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B. Results on object recognition

accuracies

Table 1 summarizes the classification accuracies on the
target domain for 9 source-target pairs. The best re-
sult for each pair is in bold and red font. Comparing
to the results reported in the main text (Table 1 and
2 there), we have added

• a variation of GFK (gfk+svm). Originally, GFK
(Gong et al., 2012) was used to perform kernel-
ized 1-nearest neighbor classification using labeled
source data. Alternatively, we take the square
root of the kernel and transform features linearnly,√
Gx. We then train a linear support vector ma-

chine classifier to classify the transformed data in
the target domain.

• the standard errors for rand. sel. (randomly
selecting data points as landmarks). This is ob-
tained by running experiments 10 times and com-
puting the averaged accuracies as well as the stan-
dard errors of those 10 trials. Note that there are
no standard errors in methods other than Rand.

Sel., as we have used the whole source domain
to select landmarks. Since the selection algorithm
(eq. (3) in the main text) is a convex optimization,
the landmarks are selected deterministically.

We can see that landmark outperforms the state-of-
the-arts, tca (Pan et al., 2009), gfs (Gopalan et al.,
2011), gfk (Gong et al., 2012) and its vari-
ation replacing 1-nearest neighbor with SVM,
scl (Blitzer et al., 2006), and kmm (Huang et al.,
2007) to large margins. One exception is on web-

cam→dslr. As mentioned in the main text, web-

cam and dslr share the same set of object instances.
Namely, for each particular object in dslr there are
image(s) of it in webcam, and vice versa. As a result,
our algorithm selects most images out of webcam as
landmarks and leaves probably too few samples to do
model selection and validation. We leave this issue for
future work.

The proposed method landmark outperforms rand.
sel. significantly (beyond the range of standard er-
rors) on 7 out of 9 pairs, and works equally well as
rand. sel. on the other two pairs of caltech →
webcam and webcam → amazon.

In addition to the methods reported in Table 1, we
have also tested domain adaptation SVM (DASVM)
(Bruzzone & Marconcini, 2010). Since several param-
eters in DASVM cannot be cross-validated using the
labeled data in the source domain, we report the
range of its classification accuracies here. Changing

the parameters in DASVM, we get accuracy ranges of
37.4–44.5%, 40.1–42.0%, 25.7–39.7%, 24.1–28.1%, and
48.4–68.2% on amazon→caltech, amazon→dslr,
webcam→amazon, webcam→caltech, and web-

cam→dslr, while landmark’s are 45.5%, 47.1%,
40.2%, 35.4%, and 75.2%, respectively. DASVM un-
derperforms our landmark in general.

C. Auxiliary tasks

The Value of auxiliary tasks The auxiliary tasks
are domain adaptation problems over new pairs of
source and target domains Dq

S → Dq
T . As pointed by

Theorem 1 in section 2.2, by incorporating landmarks
in the augmented target domain, the domain adapta-
tion becomes easier to solve. Fig. 1 provides strong
empirical evidence.

In the figure, we show the object recognition accuracies
on the original target domain as a result of solving
those auxiliary tasks individually. Specifically, for each
scale σq, we use the method of GFK to compute Gq for
the pair Dq

S → Dq
T to extract invariant features then

train a SVM classifier to minimize classification errors
on the landmarks. We contrast to gfk+svm reported
in Table 1, where the only difference is to solve the
original adaptation problem.

Clearly, the auxiliary tasks are easier to solve, resulting
more effective adaptations such that the accuracies on
the target domains are in general much better than
gfk+svm. This asserts firmly that landmarks connect
the dots between the source and the target, and thus
are an important adaptation mechanism to exploit.

The Benefits of multi-scale analysis and com-

bining In Fig. 1, we also contrast results of individ-
ual tasks to the proposed method landmark where
the solutions of multiple auxiliary tasks are combined

discriminatively. Combination clearly improves indi-
vidual tasks. Moreover, we also marked in red color
those individual tasks whose kernels have contributed
to the final solution in eq. (7). Note that, the selected
scales are indeed sparse. Both observations support
our hypothesis that the data is modeled better with
distances and similarities at multiple scales.
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Table 1. Recognition accuracies of the proposed method landmark, baseline, and several variants of landmark. Total
9 pairs of source/target domains are reported. C: caltech, A: amazon, W: webcam, D: dslr. The proposed method
performs the best.

% A→C A→D A→W C→A C→D C→W W→A W→C W→D

tca (Pan et al., 2009) 35.0 36.3 27.8 41.4 45.2 32.5 24.2 22.5 80.2
gfs (Gopalan et al., 2011) 39.2 36.3 33.6 43.6 40.8 36.3 33.5 30.9 75.7
gfk (Gong et al., 2012) 42.2 42.7 40.7 44.5 43.3 44.7 31.8 30.8 75.6

gfk+svm 38.8 43.3 37.3 50.2 40.1 45.1 39.1 34.5 67.5
scl (Blitzer et al., 2006) 42.3 36.9 34.9 49.3 42.0 39.3 34.7 32.5 83.4

kmm (Huang et al., 2007) 42.2 42.7 42.4 48.3 53.5 45.8 31.9 29.0 72.0

landmark 45.5 47.1 46.1 56.7 57.3 49.5 40.2 35.4 75.2

Rand. Sel. 44.5±0.3 44.5±0.9 41.9±0.9 53.8±0.4 49.9±0.8 49.5±1.0 39.8±0.8 34.1±0.5 74.2±0.5
Swap 41.3 47.8 37.6 46.2 42.0 46.1 38.2 32.2 70.1

unbalanced 37.0 36.9 38.3 55.3 49.0 50.1 39.4 34.9 73.9
Euc. Sel. 44.5 44.0 41.0 50.2 40.1 45.1 39.1 34.5 67.5
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Figure 1. Performance of individual auxiliary tasks. The marked circle points on the curves show recognition accuracies
on the original target domain DT , by using the kernel computed for the auxiliary task. Individual auxiliary tasks do not
perform as well as landmark. However, they all outperform baseline except when the scale is very small. In that case,
all source domain data are selected as landmarks and auxiliary tasks are not defined. The red circles denote the auxiliary
tasks whose kernels contribute to the final kernel F in eq. (7) after discriminative learning.
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