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Abstract—Effective and efficient video retrieval has become
a pressing need in the “big video” era and how to deal with
multi-concept queries is a central component. The objective
of this work is to provide a principled model for calculating
the ranking scores of video in response to multiple concepts.
However, it has been long overlooked and simply implemented
by weighted averaging the corresponding concept detectors’
scores. Our approach, which can be considered as a latent
ranking SVM, integrates the advantages of various recent
works on text and image retrieval, such as choosing ranking
over structured prediction and modeling inter-dependencies
between querying concepts and the others. Videos consist of
shots and we use latent variables to account for the mutually
complementary cues within and across shots. We introduce
a simple and effective way to make our model robust to
outliers and scarce data. Our approach gives rise to superior
performance when it is tested on not only the queries seen at
training, but also novel queries, some of which consist of more
concepts than the seen queries used for training.

Keywords-video retrieval; multi-concept retrieval; structural
learning

I. INTRODUCTION

Video data is explosively growing from surveillance,
health care, and personal mobile phones to name a few
sources. By all means, effective and efficient video retrieval
has become a pressing need in the era of “big video”,
whereas it has been an active research area for decades.
Following the earlier research on content based video re-
trieval [1], the most efforts have been mainly spent on
(multi-)concept based video retrieval [2], an arguably more
promising paradigm to bridge the semantic gap between the
visual appearance in videos and the high-level interpretations
humans perceive from the videos. We refer the readers
to the survey papers [2], [1] and the annual TRECVID
workshops [3] for a more comprehensive understanding.

A concept corresponds to one or more words or a short
description that is understandable by humans. To be useful
in automatic video retrieval systems, the concepts (e.g., fur-
niture, beach, etc.) have also to be automatically detectable,
usually by some statistical machine learning algorithms,
from the low-level visual cues (color, texture, etc.) in the
videos. Some studies have shown that a rich family of
concepts coupled with even poor detection results (10%
mean average precision) is able to provide high accuracy
results on news video retrieval—comparable to text retrieval
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Figure 1. How to calculate the ranking scores of video in response to one
or more concepts, is the central component in many video retrieval systems.
It takes as input the multi-concept queries and then returns a ranked list of
videos. The multiple concepts in a query could be directly supplied by the
users or inferred by the systems from the users’ text queries.

on the Web [4]. Correspondingly, a plethora of works has
been devoted to concept detectors [5], [6], [7], [8].

See Figure 1. Users can directly select concepts from a
checklist to compose the queries. In this paper, we focus
on retrieving whole videos as opposed to segments or
shots of videos; however, the developed approach can be
conveniently applied to video segments retrieval as well.
Despite being the key component in (multi-)concept based
video retrieval, how to effectively retrieve videos that are
related to a subset of concepts is left far from being solved.
There is a lack of principled framework or unified statistical
machine learning model for this purpose. Instead, most
existing works take the easy alternative by ranking videos
according to the weighted average of the concept detection
confidences [9], where the weights are either uniform or
in some systems derived from the similarities between an
open-vocabulary user query and the selected concepts.

The objective of this work is to provide a principled model
for multi-concept based video retrieval, where the concepts
could be directly provided by the users or automatically
selected by the systems based on user queries.

Our approach, which can be considered as a latent ranking
SVM [10], integrates different advantages of the recent
works on text and multi-attribute based image retrieval.
Particularly, we model the video retrieval as a ranking
problem following [11], as opposed to the structured pre-
diction problem used in [12], [13], in order to harvest better
efficiency and larger modeling capacity to accommodate a
latent variable. The latent variable is used for us to define
the scoring functions both within and across the video shots,



closely tracking the unique temporal characteristic of videos.
Besides, we incorporate the empirically successful intuitions
from [12], [13] that the inter-dependencies between both
selected and unselected concepts should be jointly modeled.
Finally, we introduce a novel 0-1 loss based early stopping
criterion for learning/optimizing our model parameters. This
is motivated by the fact that the 0-1 loss is more robust to
the outliers than the hinge loss, which is used to formalize
the optimization problem.

II. RELATED WORK

Concept-based video retrieval has been widely recog-
nized as the promising direction for filling in the semantic
gap in video retrieval [2], [14], since concepts summarize
the low-level visual cues to intermediate representations
which humans can read and understand. After mapping user
queries to one or more concepts [15], [16], the “retrieval”
component of a system searches the database and returns
the videos relevant to those concepts [17]. This is often
conducted by manually defined similarities and heuristic
fusion techniques [18], [9] to relate the querying concepts
with the concept detections from the videos. In contrast,
this work provides a principled model to automatically
learn and rank the videos given multiple concepts. The
concepts can take the forms of action bank [19], image
cell based detections [20], classemes [21], sentiment con-
cepts [22], events [8], and so on. Whereas many concept
detectors are trained from manually labeled datasets [23],
some other work harvests detectors from the noisy Web
data [24]. Almost all the existing concept detectors can be
conveniently integrated with our multi-concept based video
retrieval model.

Image retrieval and ranking using multiple attributes [12],
[13] are the most relevant problem to our multi-concept
based video retrieval. However, due to the vast number
of video shots in a database, the structural SVM [25],
[26] model used in [12], [13] becomes intractable in our
experiments. Instead, we develop a simpler ranking model
for our retrieval problem.

There is a pile of works on learning to rank using the
large-margin principle [27], [28], [11], [10]. The conven-
tional ranking SVMs [29], [27] only learn the ranking
function for one query, while we learn the model parameters
not only for more than one training queries but also to
generalize them to previously unseen queries.

III. APPROACH

Denote by Q all the concepts offered by the system for
the users to compose queries, by V all the videos in the
the database, and by R(Q) ⊂ V the videos that are related
to a multi-concept query Q ⊂ Q. Accordingly, the retrieval
model should possess some mechanism to differentiate the
groundtruth subset R(Q) from any other subsets of the

videos in the database and tell that

∀S ⊂ V, S 6= R(Q), R(Q) is a better output than S, (1)

given the querying concepts in Q. Directly modeling this
notion gives rise to a structured prediction model presented
in [12] and strengthened in [13]. Unfortunately, it suffers
from high computation costs due to the exponential number
2|V| of distinct subsets of V . Instead, we relax the retrieval to
a ranking problem as in [11] and managed to accommodate
multiple latent variables to tackle the shot-level detections.
In particular, the rigorous criterion (eq. (1)) for retrieval is
replaced by a less constrained ranking criterion,

∀Vi ∈ R(Q),∀Vj /∈ R(Q), Vi ranks ahead of Vj , (2)

where Vi and Vj are a pair of videos in the database V .
Comparing eq. (1) with eq. (2), the former calls for a

model to operate over 2|V| subsets of videos while for the
latter we only need a model to assign a ranking score for
each video V ∈ V . We use the following ranking model in
this work F : Q× V 7→ R,

F(Q,V ) =
1

|Q|
∑
q∈Q

f(q, V |Θ), (3)

which breaks down into several ranking scoring functions
f(q, V |Θ), q ∈ Q, each for an individual concept, and
Θ denotes the model parameters. We shall write f(q) ,
f(q, V |Θ) in the following for brevity, and leave the dis-
cussion of the scoring functions to Sections III-A and III-B.

Given a multi-concept query Q, we simply rank the videos
by F and return the top portion of the ranking list to the
user. In order to train the model, we employ the strategy
used in ranking SVM [29], [27] and arrive at the following:

min
Θ

∑
Q

1

|N (Q)|
∑

(i,j)∈N (Q)

L (F(Q,Vj)−F(Q,Vi)) ,

(4)

where N (Q) is the collection of all the pairs of videos Vi
and Vj in eq. (2) for the query Q, and L(x) ≥ 0 is a loss
function. The loss function will impose some amount of
penalty when the ranking scores of a pair of videos violate
the ranking constraint of eq. (2).

We exploit two types of loss functions in this work, the
hinge loss Lhinge(x) = max(x + 1, 0) and 0-1 loss L0-1(x)
which takes the value 1 when x > 0 and 0 otherwise.
Note that we cannot actually solve the optimization problem
with the 0-1 loss; we instead use it to define a novel early
stopping criterion when we solve the problem with hinge
loss by sub-gradient descent. Namely, the program stops
when the change of the objective function value, is less than
a threshold (10−10 in our experiments).

As a result, we are able to take advantage of the fact that
the 0-1 loss is more robust than the hinge loss when there are
outliers in the data. The hinge loss alone would be misled by



the outliers and results in solutions that are tuned away from
the optimum, while the 0-1 loss helps avoid that situation
by suppressing the penalties incurred by the outliers. Indeed,
the novel stopping criterion by the 0-1 loss significantly
improves the results of hinge loss in our experiments. Note
that the 0-1 loss based stopping criterion is another key
point clearly differentiating our approach from [11], which
motivates our ranking model.

A. Video-level concept detection

To quickly respond to the users’ queries, it is often the
case that the concept detection results φ(V ) over each video
V ∈ V are computed off-line and then stored somewhere.
We use φ as the shorthand of φ(V ). Note that φ is
a |Q|-dimensional vector whose entry φq corresponds to
the detection confidence of the concept q (in a video V ).
We next describe how to use this vector, the video-level
concept detection results, to design the scoring functions
f(q), q ∈ Q ⊂ Q. We start from the weighted average which
prevails in the existing video retrieval works.

1) Weighted average: Recall that the overall scoring
function F(Q,V ) breaks down into several individual func-
tions f(q, V |Θ) , f(q), q ∈ Q, each of which accounts for
one concept (eq. (3)). A common practice to rank the videos
given a multi-concept query Q, is by the weighted average
of the corresponding concept detection confidences:

fV
avg(q) = Θqq φq , 〈1q,φ〉 , (5)

where the weights Θqq, q ∈ Q could be the similarities
between the concepts in Q and an open-vocabulary user
query [15], [16]. We only study the uniform weights Θqq =
1 in this work without loss of generality.

Note that this weighted average fails to model either 1) the
correlations between the concepts in Q or 2) the correlations
between Q and the remaining unselected concepts in Q.
To see this point more clearly, we denote by 1q ∈ R|Q|
the one-hot vector taking the value 1 at the q-th entry and
zeros else. The rightmost of eq. (5) thus follows. Further, the
model parameters Θ = (11,12, · · · ,1|Q|)T = I ∈ R|Q|×|Q|
actually correspond to an identity matrix. The entry Θqp,
which is supposed to encode the relationship of concepts q
and p, is 0 in the weighted average (eq. (5)).

B. Shot-level concept detection

In practice many concept detectors actually take the video
shots, or even frames, as the input [8], [19], [20]. Suppose
for a video V in the database we have partitioned it into H
shots. A video retrieval system can then pre-compute and
store the concept detection results φh ∈ R|Q|, h = 1, · · · ,H
for all the concepts Q over the shots of the video. Compared
to the video-level concept detections, the shot-level detec-
tions provide more insights and finer-grained information
about the video database. We thus propose some new form
of scoring function to take advantage of such detection

results. One potential benefit we can have from the shot-
level concept detections is that, among all the shots of a
video V , we can select the most informative shot for the
scoring function.

fVS
latent(q) = max

h∈{1,··· ,H}

〈
θq,φh

〉
+
∑
p∈Q

max
g∈{1··· ,H}

υqpφ
g
p, (6)

where the model parameters θq ∈ R|Q|, which correspond
to the concept q ∈ Q ⊂ Q, count the contributions to q from
all the concepts within the shot, which will be selected by
the latent variable h ∈ {1, 2, · · · ,H}. Also, maxg υ

q
pφ

g
p max-

pools the confidences of each concept across all the shots of
video V . Note that we therefore provide two complementary
types of modeling capabilities in fVS

latent(q). The first term
is robust to the concepts which are negatively correlated
with q. For instance, a tourist may capture a video within
a hotel room and then shift to the beach outside. As a
result, both “beach” and “furniture” will be detected with
high confidences in the video but they are exclusive over a
single shot. The second terms strengthen the detection score
of concept q from some positively correlated concepts in
the video since it is more likely for two positive concepts
to happen in two different shots rather than same shots. The
model parameters θq and υq are learned by solving eq. (4)
with sub-gradient descent. Details are shown as follow.

Optimization: We solve for the model parameters by
(sub-)gradient descent. As discussed in Section 3.1, the loss
function L is non-zero on the pairs {(Vi, Vj)}, for each of
which the negative video Vj has higher ranking score than
the positive Vi. As a result, we get the gradients on those
pairs and for the other pairs the gradients are simply zero.

Denoting by

Sj =
∂L

∂F(Q,Vj)
× ∂F(Q,Vj)

∂Θ
, (7)

we thus have the overall gradients of eq. (4) by∑
Q

1

|N (Q)|
∑

(i,j)∈N (Q)

(Sj − Si) . (8)

Note that the model parameters Θ consist of two parts
(θ,υ), corresponding to the two terms of fVS

latent (cf. eq. (6)),
respectively. We compute the gradients with respect to the
first part θ using the softmax derivation to approximate a
smooth gradients, as suggested by [30]:

∂F(Q,Vj)
∂θ

=
∑

h∈{1,2,··· ,H}

e〈θ
q,φh〉φh∑

j∈{1,2,··· ,H} e
〈θq,φj〉 . (9)

We write out the gradients with respect to the second
part υ over different dimensions of υ. Recall that he second
term of fVS

latent (cf. eq. (6)), maxg υ
q
pφ

g
p, max-pools over all

the shots of a video for each single concept. As a result, we
have the following:

∂F
υqp

= φg∗p , p = 1, 2, · · · ,H, q = 1, · · · ,H (10)



where g∗ is determined by g∗ ← maxg υ
q
pφ

g
p.

IV. EXPERIMENTAL RESULTS

Our experiments depend on two separate datasets respec-
tively for video retrieval and training the concept detectors.
We further exploit three sets of multi-concept queries. Two
sets consists of 50 queries in the form of concept pairs, one
for training and testing and the other just for testing. The
other sets contain 50 triplets concepts queries to be used
just in testing. We train our model using only the first set of
queries on the training set, and then test it by all three sets
of queries on the test set.

A. Datasets

Our approach is mainly tested over the IACC.2.B dataset
which is the test set used in the Semantic Indexing (SIN)
task of TRECVID 2014 [3]. We randomly split IACC.2.B
into a training set of 712 videos, a validation set of 474
videos, and a test set of 1,185 videos. From the

(
30
2

)
possible

pairs of concepts, we select 50 pairs as the first set of
queries in our experiments. For each query, we consider
that a video is related when each concept in the query
has at least one positive shot in the video. This results in
minimally 27, maximally 86, and on average 44 out of the
1,185 videos in the database (i.e., the test set) related to the
concept-pair queries. Additionally, we also build the second
set of queries with 50 concept triples. There are on average
24 related videos to a concept-triplet query. Note that the
more concepts a query comprises, the more challenging the
retrieval task is due to the smaller number of related videos.
We also test our main approach on IACC.2.C dataset which
is the test set for SIN task of TRECVID 2015 [14], with
similar settings as a correctness proof of our approach.

B. Concept detectors

It has been an active research area to learn robust concept
detectors for videos [5], [8], [6]. Virtually all kinds of
concept detectors can be employed in our retrieval model,
as long as they output the shot or video level detection con-
fidences. We train our own detectors following the practice
of [7]. In particular, we train 60 independent detectors from
the training data (IACC.1.tv10.training, IACC.1.A&B&C) of
the TRECVID 2014 SIN task [3].

C. Practical considerations in implementation

In our implementation, we add
∑

q∈Q λ ‖θq‖22+γ ‖υq‖
2
2

to regularize the optimization problem in eq. (4) and tune the
hyper-parameters λ and γ using the validation set. Note that
γ = 0 except for the scoring function fVS

latent(q). For the shot-
level concept detections, we impose symmetric constraints
over the model parameters (i.e., θq

p = θp
q ). When we train the

model with latent variable h (cf. fS
latent and fVS

latent), we remove
the shots without annotations from negative training videos.
Both θq and υq are initialized by one-shot vectors. The time

complexity of training a pairwise ranking loss function is
O(n2) [31].

D. Comparison results

In Table I, we report the comparison results of different
scoring functions that account for different types of concept
detectors, evaluated using Normalized Discounted Cumula-
tive Gain NDCG [35]. Given a ranking list for query Q,
NDCG@k is calculated by:

NDCG@k =
1

Z

k∑
j=1

G[j]

1 + log2 j
, (11)

where j is the rank of a video and G[j] = rel(j)2 with
rel(j) being the number of positive concepts shared by
that video and the query Q. The partition Z is calculated
from the ideal ranking list such that any NDCG@k value is
normalized between 0 and 1. We shall report the results at
k = 5, 10, · · · , 50 in the following experiments.

Following the common practice in the existing concept-
based video retrieval systems, we empirically test a variety
of fusion methods [17], [18], [34] as the (old) baselines—our
approach offers a new simple yet more advanced baseline
for the concept-based video retrieval. Probably because our
detectors output probabilities after the Platt calibration, the
average operation in fV

avg performs the best among the fusion
techniques discussed in [17]. We thus only show the results
of fV

avg and the second best, PicSOM [34], in the rows tagged
by “Common practice” and “PicSOM 2013”, respectively,
in Table I. Also, we used a another common technique as
explained in [33] to capture just positive correlation between
pairs of concepts, using a Co-occurrence matrix of them built
in training stage.

We further include ranking SVM [28] and TagProp [32] in
the table. Both takes as input the video-level representations.
TagProp is a state-of-the-art image tagging algorithm. We
reported the best results for each after parameter tuning.

There are |Q| = 30 concepts labeled for our video
database V , which is drawn from the IACC.2.B dataset. All
queries are constructed from these concepts such that we
have the groundtruth ranking list for evaluation. We first see
the video retrieval results in using 30 concepts of Table I.
Our model improves the fV

avg by a significant margin.
Though the queries are built from the vocabulary of 30

concepts, we are actually able to harvest more concept detec-
tors from another independent dataset, TRECVID 2014 SIN
task training set. Our model is flexible to include them by
expanding the concept detection vectors φ (see Section III).
The bottom half of Table I shows the results corresponding
to 60 concept detectors. We see that results using the shot-
level scoring functions have been significantly improved
over those of the 30 concepts. This is in accordance with
our intuition as well as the observation in [13]. Indeed, the
inter-dependences of more concepts may provide better cues



Table I
COMPARISON RESULTS OF DIFFERENT METHODS IN PAIR-CONCEPT BASED VIDEO RETRIEVAL.

Baselines
Functions NDCG@5 @10 @15 @20 @25 @30 @35 @40 @45 @50 Mean

Common practice fV
avg 0.626 0.571 0.556 0.561 0.575 0.588 0.597 0.610 0.620 0.626 0.593

TagProp [32] 0.300 0.273 0.256 0.268 0.277 0.286 0.294 0.301 0.308 0.314 0.288
Rank-SVM [29] 0.579 0.529 0.522 0.526 0.543 0.554 0.565 0.568 0.577 0.581 0.555
Co-occurrence [33] 0.594 0.507 0.486 0.495 0.518 0.534 0.549 0.556 0.564 0.574 0.538
PicSOM 2013 [34] 0.630 0.571 0.555 0.559 0.573 0.581 0.592 0.605 0.615 0.621 0.590
|Q|= 30 concepts
Shot-level (0-1 loss) fVS

latent 0.629 0.588 0.583 0.600 0.618 0.631 0.647 0.654 0.662 0.671 0.628
|Q|= 60 concepts
Shot-level (Hinge loss) fVS

latent 0.654 0.592 0.577 0.591 0.609 0.629 0.643 0.653 0.667 0.674 0.633
Shot-level (0-1 loss) fVS

latent 0.698 0.638 0.617 0.609 0.630 0.641 0.654 0.664 0.668 0.674 0.649

Table II
BASELINE AVERAGES OF NDCG@5-50 ON THREE DIFFERENT SETS
AND THE MEAN RATIO OF POSITIVES TO TOTAL NUMBER OF VIDEOS

Dataset IACC.2.B IACC.2.C IACC.2.B + C
TagProp 0.2888 0.241 0.123

Rank-SVM 0.555 0.264 0.395
Co-occurrence 0.538 0.444 0.302

fV
avg 0.593 0.537 0.404

fVS
latent 0.649 0.569 0.435

Mean Ratio 0.0159 0.0134 0.0106

for our scoring functions and make them more robust to the
unreliable concept detection confidences.

E. Generalizing out of the training queries

After training our models using the pair-concept queries,
we expect it to also generalize well to other multi-concept
queries. We choose two sets of new queries for this ex-
periment: (a) 50 new pair-concept queries, and (b) 50 new
triple-concept queries. None of them are used to train our
model. Figure 2 shows the retrieval results using our model.
We can see our model with the shot-level scoring functions
fVS

latent performs quite well upon the new queries. The results
are not only significantly better than fV

avg but also comparable
to those on the seen pair-concept queries (cf. Table I).
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Figure 2. The video retrieval results using previously unseen queries: (a)
pair-concept queries, and (b) triple-concept queries.

F. Extensive Experiments

We extended our experiments using IACC.2.C dataset by
dividing it to training, validation and testing sets with similar
settings as explained in Section 4.A. Also, by integrating
it with IACC.2.B, we built one super dataset. Different
experiments shown in Table II are various methods and all
of them had a drop, however, in all of three cases we see an
improvement after applying our method. By decreasing the
ratio of positives to total number of samples in datasets, we
see a drop in baseline performance. 50 queries with highest
frequency of positives has been considered for each set.

V. CONCLUSION

We have developed a principled model for multi-concept
based video retrieval. It integrates the advantages of several
existing methods on text based and multi-attribute based
image retrieval. In addition, we introduce latent variables
and the 0-1 loss based early stopping criterion to model
the temporal structures and the noisy labels in videos,
respectively. Our experiments clearly verify the effectiveness
of the proposed model for not only queries seen at training,
but also previously unseen queries.
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