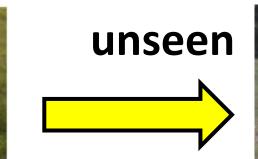
An Empirical Study and A for Objec Wei-Lun Chao*1, Soravit ¹U. of Southern California,

Highlights

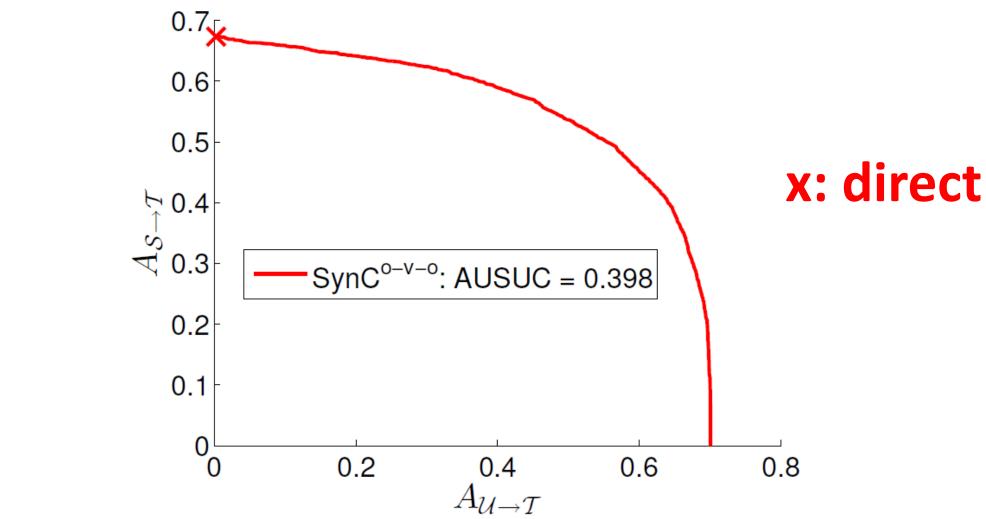
- Study generalized zero-shot learning (GZSL) Test data & possible labels from BOTH Seen + **Unseen** classes, not just from **Unseen** ones.
- Propose an effective *calibration* method to adapt ZSL algorithms to perform well in GZSL
- Develop a metric AUSUC for GZSL evaluation
- Establish a performance upper bound of GZSL via *idealized* semantic embeddings

ZSL vs. Generalized ZSL

- Seen classes come with labeled examples. **Unseen** classes come **without**.
- **Goal:** Expand classifiers and label space from Seen classes to Unseen ones = dealing with long-tailed object distributions and recognition in the wild
- Relate Seen and Unseen classes with Semantic *embeddings* (attributes, word vectors, etc.)

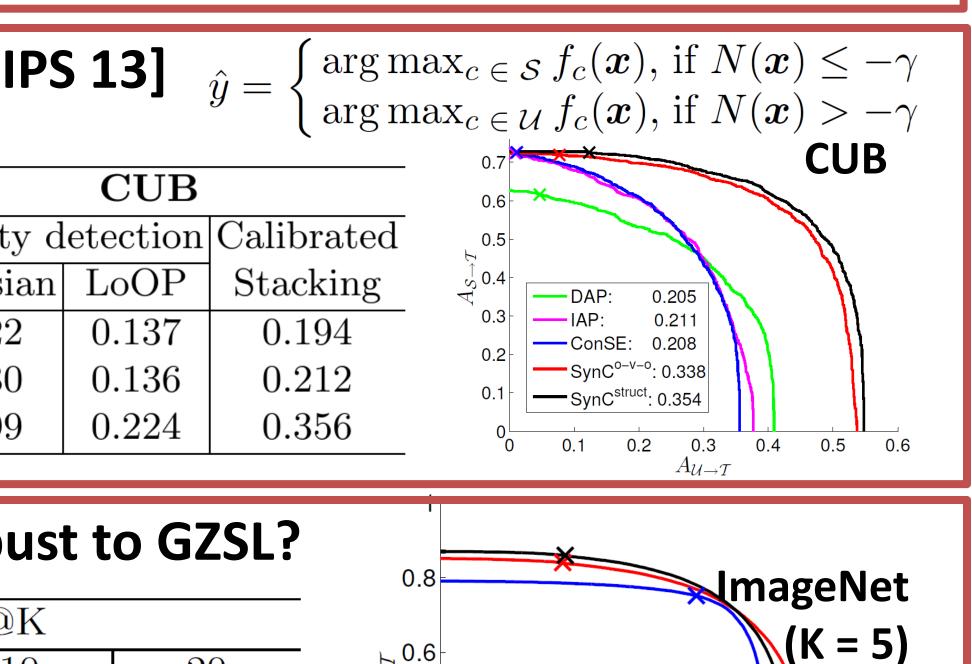

seen 👀

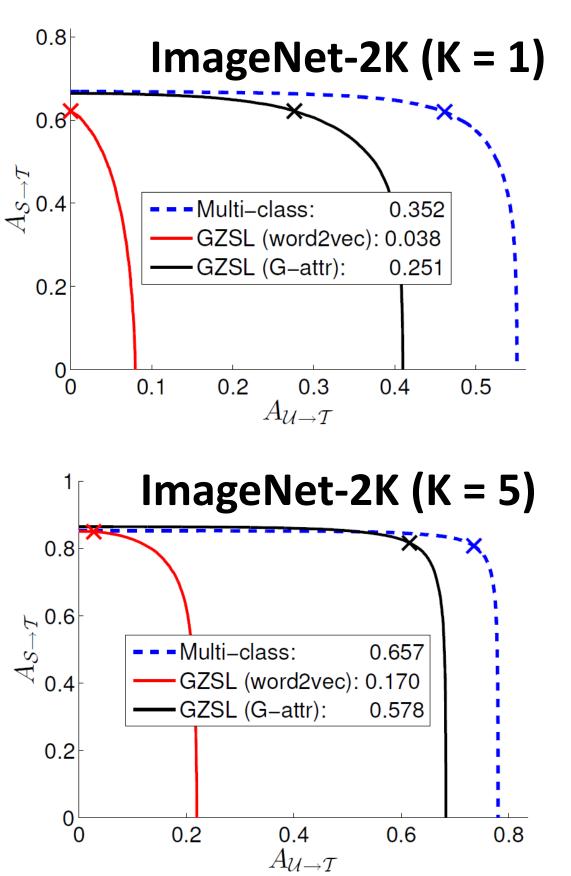
snout


stripes, mane, snout From Derek Hoiem's slides

Training: Learn from **Seen** classes' images and semantic embeddings

Testing: (Conventional) Zero-Shot Learning (ZSL) Classifying images from **Unseen** into the label space of **Unseen Generalized Zero-Shot Learning (GZSL)** Classify images from **BOTH** Seen + Unseen into the label space of **BOTH** Seen + Unseen Much more challenging!


Analysis of Generalized Zero-Shot Learning ct Recognition in the Wild vit Changpinyo ^{*1} , Boqing Gong ² , and Fei Sha ^{1,3} , ² U. of Central Florida, ³ U. of California, Los Angeles	
SL algorithms in GZSL setting	Experiments & Analysis
Joint labeling space of Seen (S) and Unseen (U): $\mathcal{T} = \mathcal{S} \cup \mathcal{U}$ Scoring function for each class $f_c(x), \forall c \in \mathcal{T}$ \triangleright DAP [Lampert et al., CVPR 09]: $f_u(x) = w(a_u)^T x$ \triangleright ConSE [Norouzi et al., ICLR 14]: $f_u(x) = \cos(s(x), a_u)$	 Datasets (S / U): AwA (40/10), CUB (150/50), ImageNet (1,000/20,842) Semantic embeddings: attributes for AwA/CUB, word vectors for ImageNet Visual features: 1,024-dim GoogLeNet features Evaluation: AUSUC on (class-normalized) classification accuracy or Flat Hit@K AwA /CUB: also test on reserved 20% of data from the S seen classes ImageNet : also test on validation set
$\begin{array}{l} & \searrow \mbox{SynC [Changpinyo et al., CVPR 16]: } f_u(\boldsymbol{x}) = P(\boldsymbol{a}_u \boldsymbol{x}) \\ & \mbox{Classification by } \textit{Direct Stacking} \\ & \hat{y} = \arg \max_{c \in \mathcal{T}} f_c(\boldsymbol{x}) \\ & \hline & \frac{\mathbf{AwA}}{\mathbf{Method}} \frac{\mathbf{CUB}}{Au \rightarrow u \ As \rightarrow s \ Au \rightarrow \tau \ As \rightarrow \tau} \\ & \hline & \frac{\mathbf{AwA}}{\mathbf{DAP} \ 51.1 \ 78.5 \ 2.4 \ 77.9 \ 38.8 \ 56.0 \ 4.0 \ 55.1 \end{array} $	$ \begin{array}{ $
$\begin{array}{c cccc} ConSE & 63.7 & 76.9 & 9.5 & 75.9 \\ SynC & 73.4 & 81.0 & 0.4 & 81.0 & 54.4 & 73.0 & 13.2 & 72.0 \\ \hline A_{\mathcal{Z} \rightarrow \mathcal{Y}} \end{array}$: Accuracy of classifying images from \boldsymbol{Z} into the space of \boldsymbol{Y}	0.2
Classification by <i>Calibrated Stacking</i> $\hat{y} = \arg \max_{c \in \mathcal{T}} f_c(x) - \gamma \mathbb{I}[c \in \mathcal{S}]$ $\gamma \to +\infty$ All into U $\gamma \to -\infty$ All into S $\gamma = 0$ Direct stacking	All (20,345)ConSE SynC0.007 0.0060.030 0.0340.048 0.0590.073 0.0970.073 0.097■How far are we from the <i>ideal</i> multi-class & GZSL performance? Analysis on ImageNet-2K: $ U = 1000$ ImageNet-2K (K = 1)>Multi-class classifiers trained on data from S & UImageNet-2K (K = 1)
Area Under Seen Unseen accuracy Curve (AUSUC) Varying the calibration factor leads to Seen-Unseen Accuracy Curve (SUC) of $(A_{U \to T}, A_{S \to T})$ Area Under SUC (AUSUC) as the metric for GZSL $A_{V \to 0.4}$ $A_{V \to 0.4}$ $A_$	$ \begin{array}{l} \blacktriangleright \textit{Idealized semantic embeddings (G-attr)} \\ = Average of visual features for each class \\ \hline Method & Flat hit@K \\ \hline 1 & 5 & 10 & 20 \\ \hline \\ \hline \\ GZSL & \hline \\ G-attr from 1 image & 0.08 & 0.25 & 0.33 & 0.42 \\ \hline \\ G-attr from 10 images & 0.20 & 0.50 & 0.62 & 0.72 \\ \hline \\ G-attr from all images & 0.25 & 0.58 & 0.69 & 0.79 \\ \hline \\ Multi-class classification & 0.35 & 0.66 & 0.75 & 0.82 \\ \hline \\ Analysis on ImageNet All: \\ Flat hit@K (K = 1/5) \\ \end{array} $
0.1 0 0 0 0 0.2 0.4 0.6 0.8	WORD2VEC: $0.006/0.034$ G-attr from 1 image: $0.018/0.071$


Pr

G-attr from all images 0.067/0.236

