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Here we provide the supplementary materials to support the main text.

Section A derives the normalization constant for GDPPs.
Section B describes two approaches to sample from GDPP distribution.
Section C describes the algorithm to aggregate user summaries into an oracle sum-

mary.
Section D compares our large-margin and SeqGDPP models to state-of-the-art query-

focused video summarization frameworks.

A Normalization of GDPPs

To compute the normalization constant ZG for GDPP, we have to sum over all the
possible subsets of the ground set y ⊆ Y:
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where π(k) , π(κ = k), and eN(k) ,
∑
|J|=k

∏
n∈J λn is the elementary symmetric

polynomial over the eigenvalues λ1, λ2, · · · , λN of the DPP kernel L.
Therefore, the computational complexity of the normalization constantZG for GDPP

depends on the choice of the “size” distribution π(k) and the complexity to compute
eN(k). Evaluating π(k) usually takes less than O(N2) time for π(κ) being any popular
discrete distribution. By Newton’s identities or the recursive algorithm [6, Algorithm
7] we can compute all the elementary symmetric polynomials eN(k), k = 1, 2, · · ·N,
in O(N2) time. Overall, the normalization complexity of GDPP hinges on the eigen-
decomposition of L for obtaining λn in eq. (1), and is about the same as the complexity
of normalizing an L-ensemble DPP (i.e., computing det(L+ I)).
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B Sampling from GDPP

We consider exact sampling method assuming an already existing eigendecomposition
of L and a Markov chain for sampling GDPP.

B.1 Sampling via Eigendecomposition

Since GDPP could be viewed as a weighted mixture of k-DPP, we have the following
decomposition of the probability:

P (S|S ∼ GDPP) = P (S|S ∼ k-DPP)P (k|k ∼ GDPP) (2)

Here with a slight abuse of notation we let k ∼GDPP to denote the probability of
sampling a k-DPP from GDPP. With aforementioned properties we have

P (k|k ∼ GDPP) ∝ π(k)ek(L) (3)

which can be computed in O(Nk + k2) if we already have access to eigenvalues of L.
Hence, we can employ a 2-phase procedure of first deciding which k-DPP to sam-

ple from, and then sampling from corresponding k-DPP. The procedure is shown in
Algorithm 1.

Algorithm 1 Sampling from GDPP via Eigendecomposition

Require: L the GDPP kernel, π the (unnormalized) size probability, kmax and kmin as stated in
the assumption, V the ground set

Ensure: S sampled from GDPP
Sample k from discrete distribution {pi = π(i)ei(L)}Ni=0

Sample S from k-DPP

B.2 Sampling via Markov Chain

We consider sampling from GDPP via Markov chains. While running the chain, we
maintain a currently active set as the current state for the chain, and in each iteration
we try to update the current active set only slightly with certain probabilities such that
the update is efficient to be done and the stable distribution – the distribution of active
set when running chain long enough – is the same as GDPP. Since in each iteration we
only update the active set slightly, the probability of transferring from one state to any
other states in the chain is non-zero. To fulfill this condition, it suffices to assume that
πi > 0 for all i such that, there exists j < i and k > i such that πj > 0 and πk > 0.

The sampling efficiency of Markov chain heavily depends on its mixing time. Thus,
besides constructing the chain, we also show that the constructed chains are fast mixing.

We construct an add-delete Markov chain to sample from GDPP. Concretely, we
update the active set by either trying to add an element to or delete an element from it
with certain transition probabilities. The full algorithm is shown in Algorithm 2.
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Algorithm 2 Add-Delete Markov Chain for GDPP

Require: L the GDPP kernel, π the (unnormalized) size probability, kmax and kmin as stated in
the assumption, V the ground set

Ensure: S sampled from GDPP
Initialize S s.t. P (S) > 0
while not mixed do

Let b = 1 with probability 1
2

if b = 1 then
Pick s ∈ V uniformly randomly
if s /∈ S and |S| < kmax then

S ← S ∪ {s} with probability p+(S, s) = F (S∪{s})
F (S)+F (S∪{s})

else if s ∈ S and |S| > kmin then
S ← S\{s} with probability p−(S, s) = F (S\{s})

F (S)+F (S\{s})
end if

else
Do nothing

end if
end while

Mixing Time To show fast mixing, we consider using path coupling, which essentially
says that if we have a contraction of two (coupling) chains then we have fast mixing.
Assume we have a chain (St) on state space 2V with transition matrix P , a coupling is
a new chain (St, Yt) on V × V such that both (St) and (Yt), if considered marginally,
are Markov chains with the same transition matrices P . The key point of coupling is
to construct such a new chain to encourage St and Yt to coalesce quickly. If, in the
new chain, Pr(St 6= Yt) ≤ ε for some fixed t regardless of the starting state (S0, Y0),
then τ(ε) ≤ t [1]. To make the coupling construction easier, Path coupling [3] is then
introduced so as to reduce the coupling to adjacent states in an appropriately constructed
state graph. The coupling of arbitrary states follows by aggregation over a path between
the two. Path coupling is formalized in the following lemma.

Lemma 1. [3,4] Let δ be an integer-valued metric on V × V where δ(·, ·) ≤ D.
Let E be a subset of V × V such that for all (St, Yt) ∈ V × V there exists a path
St = Z0, . . . , Zr = Yt between St and Yt where (Zi, Zi+1) ∈ E for i ∈ [r −
1] and

∑
i δ(Z

i, Zi+1) = δ(St, Yt). Suppose a coupling (S, T ) → (S′, T ′) of the
Markov chain is defined on all pairs in E such that there exists an α < 1 such that
E[δ(S′, T ′)] ≤ αδ(S, T ) for all (S, T ) ∈ E, then we have τ(ε) ≤ log(Dε−1)

(1−α) .

With path coupling we are able to bound the mixing time of Algo. 2 as follows.
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Theorem 1 Let α = max(S,T )∈E{α1, α2} where α1 and α2 are defined as J

α1 =1− J|T | > kminK
∑
i∈T
|p−(T, i)− p−(S, i)|+

− J|S| < kmaxK
∑
i∈V \S

|p+(S, i)− p+(T, i)|+;

α2 =J|S| > kminK(min{p−(S, s), p−(T, t)} −
∑
i∈R
|p−(S, i)− p−(T, i)|)+

J|S| < kmaxK(min{p+(S, t), p+(T, s)} −
∑

i∈V \(S∪T )

|p+(S, i)− p+(T, i)|).

In the expression, summations over absolute difference quantifies the sensitivity of tran-
sition probabilities to adding/deleting elements in neighboring (S, T ) in E. Assuming
α < 1, we have

τ(ε) ≤ 2N log(kmaxε−1)

1− α

Proof. We define δ(X,Y ) = 1
2 (|X ⊕ Y | + ||X| − |Y ||). It is clear that δ(X,Y ) ≥ 1

for X 6= Y . Let E = {(X,Y ) : δ(X,Y ) = 1} be the set of adjacent states (neighbors),
and it follows that δ(·, ·) is a metric satisfying conditions in Lemma 1. Also we have
δ(X,Y ) ≤ kmax.

We consider constructing a path coupling between any two states S and T with
δ(S, T ) = 1, S′ and T ′ be the two states after transition. We sample cS , cT ∈ {0, 1}, if
cS is 0 then S′ = S and the same with cT . iS , iT ∈ V are drawn uniformly randomly.
We consider two possible settings for S and T :

1. If S or T is a subset of the other, we assume without of generality that S = T ∪{t}.
In this setting we always let iS = iT = i. Then
(a) If i = t, we let cS = 1− cT ;

i. If cS = 1 then δ(S′, T ′) = 0 with probability p−(S, t);
ii. If cS = 0 then δ(S′, T ′) = 0 with probability p+(T, t);

(b) If i ∈ T , we set cS = cT ;
i. If cS = 1 and |T | > kmin then δ(S′, T ′) = 2 with probability (p−(T, i)−
p−(S, i))+;

(c) If i ∈ V \S, we set cS = cT ;
i. If cS = 1 and |S| < kmax then δ(S′, T ′) = 2 with probability (p+(S, i)−
p+(T, i))+.

2. If S and T are of the same sizes, let S = R ∪ {s} and T = R ∪ {t}. In this setting
we always let cS = cT = c. We consider the case of c = 1:
(a) If iS = s, let iT = t. If |S| > kmin, then δ(S′, T ′) = 0 with probability

min{p−(S, s), p−(T, t)};
(b) If iS = t, let iT = s. If |S| < kmax, then δ(S′, T ′) = 0 with probability

min{p+(S, t), p+(T, s)};
(c) If iS ∈ R, let iT = iS . If |S| > kmin, then δ(S′, T ′) = 2 with probability
|p−(S, iS)− p−(T, iT )|;
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(d) If iS ∈ V \(S ∪ T ), let iT = iS . If |S| < kmax, then δ(S′, T ′) = 2 with
probability |p+(S, iS)− p+(T, iT )|.

In all cases where we didn’t specify δ(S′, T ′), it will be δ(S′, T ′) = 1. In the first case
of S = T ∪ {t} we have

E[δ(S′, T ′)]
E[δ(S, T )]

≤ 1

2N
((1− p−(S, t)) + (1− p+(T, t))+

(2|T |+ J|T | > kminK
∑
i∈T

(p−(T, i)− p−(S, i))+)+

(2(N − |S|) + J|S| < kmaxK
∑
i∈V \S

(p+(S, i)− p+(T, i))+))

= 1− 1

2N
(1−J|T | > kminK

∑
i∈T

(p−(T, i)− p−(S, i))+

− J|S| < kmaxK
∑
i∈V \S

(p+(S, i)− p+(T, i))+) = 1− α1

2N
,

while in the second case of |S| = R ∪ {s} and T = R ∪ {t} we have

E[δ(S′, T ′)]
E[δ(S, T )]

≤ 1

2N
((1− J|S| > kminKmin{p−(S, s), p−(T, t)})+

(1− J|S| < kmaxKmin{p+(S, t), p+(T, s)})+

(2|R|+ J|S| > kminK
∑
i∈R
|p−(S, i)− p−(T, i)|)+

(2(N − |S| − 1) + J|S| < kmaxK
∑

i∈V \(S∪T )

|p+(S, i)− p+(T, i)|))

= 1− 1

2N
(J|S| > kminKmin{p−(S, s), p−(T, t)} −

∑
i∈R
|p−(S, i)− p−(T, i)|+

J|S| < kmaxK(min{p+(S, t), p+(T, s)}−∑
i∈V \(S∪T )

|p+(S, i)− p+(T, i)|)) = 1− α2

2N
.

Let α = max(S,T )∈E{α1, α2}. If α < 1, with Lemma 1 we have

τ(ε) ≤ 2N log(kmax/ε)

1− α
.

Remarks This bound involves some constants that is hard to compute in practice. It is
more general due to the generality of GDPP – when setting π to be uniform in [k] and
set kmin = 0, kmax = k, we recover the bound in [9].

C Constructing Oracle Summaries

Supervised video summarization approaches are conventionally trained on one target
summary per video, i.e. oracle summary. In our annotation collection stage, we ob-
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Table 1: Comparison results for query-focused video summarization (%). AUCs are computed on
the curves drawn in Figure(1) until the 60 seconds mark. Matching colors indicate the base-model
and its equivalent large-margin peer.

AUCΠ AUCGaussian

SH-DPP [10] 7.03 6.92
LSTM-DPP [13] 5.99 5.97
SeqDPP [5] 6.14 6.18
LM-SeqDPP 9.70 9.66
MemNet [11] 9.93 9.77
LM-MemNet 9.83 9.67
SeqGDPP 9.72 9.66
LM-SeqGDPP 10.43 10.30

tained 3 user summaries per video, however, to train the models, we aggregate them
into one oracle summary using a greedy algorithm that has been used in several previ-
ous works [5,10,11]. To construct an oracle summary, the algorithm [7] begins with the
set of common shots (y0) of all three human-generated summaries and at each iteration,
it appends to y0 the shot that results in the largest marginal gain in G(i),

G(i) =
∑
u

F1(y0 ∪ i, yu)−
∑
u

F1(y0, yu) (4)

where u iterates over three human-generated summaries and F1 is the harmonic
F-score obtained using the evaluation metric.

D Query-Focused Video Summarization

In [10], Sharghi et al. first defined query-oriented video summarization, that is given
a {video,query} pair, system summary must include both contextually important seg-
ments and preferences (query) indicated by the user at the same time. In this section,
we assess the performance of our models and compare them to several baselines.

Dataset. [11] compiled a dataset tailored specifically for query-focused video summa-
rization, built upon UT Egocentric videos [8]. For each of the four videos in UTE, 46
queries are defined each as a pair of visual concepts, and for every {video,query} pair,
3 human-generated summaries are collected.

Features. We follow [10,11] in extracting the 76-dimensional concept detection scores
obtained by running classifiers from SentiBank [2] as feature representation.

Baselines. We compare our models to state-of-the-art query-focused summarization
algorithms as well as other baselines including:

– Sequential-Hierarchical DPP [10]. SH-DPP consists of two stacked SeqDPP lay-
ers where the top layer summarizes the video by only adding query-relevant shots to
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(a) Π temporal filter
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(b) Gaussian temporal filter

Fig. 1: Comparison results for query-focused video summarization task. x axis represent the tem-
poral filter parameter. In case of Π filter, it indicates how far a match can be temporally (in terms
of seconds), whereas in the Gaussian filter, it is the kernel bandwidth.

the summary, and the bottom layer completes the summary by adding to it a diverse set
of contextually important events that might not reflect the queries but are necessary to
make a coherent story. Furthermore, the bottom layer is conditioned on the output of
top layer, hence, minimizing the redundancy of information and maximizing diversity
between the shots included by two layers.

– LSTM-DPP [13]. To make this framework compatible for query-focused summa-
rization, we concatenate the features with the query and feed them to the network.

– MemNet [11]. This framework takes advantage of strong modeling capacity in
memory networks [12] to generate query-dependent features jointly from static visual
features and the query. These features are then fed to a SeqDPP layer for summarization.

In Figure(1) and Table(1), we compare the baselines with SeqGDPP and large-
margin modification of SeqDPP and MemNet. Comparing base SeqDPP with LM-
SeqDPP, the performance gain is quite significant. On the other hand, MemNet pre-
forms competitive to LM-MemNet. LM-SeqGDPP outperforms all the models, and this
is in line with our generic video summarization results reported in Table(2) of the main
text.
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