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Abstract Video recognition usually requires a large amount of training samples,
which are expensive to be collected. An alternative and cheap solution is to draw
from the large-scale images and videos from the Web. With modern search en-
gines, the top ranked images or videos are usually highly correlated to the query,
implying the potential to harvest the labeling-free Web images and videos for
video recognition. However, there are two key difficulties that prevent us from
using the Web data directly. First, they are typically noisy and may be from a
completely different domain from that of users’ interest (e.g. cartoons). Second,
Web videos are usually untrimmed and very lengthy, where some query-relevant
frames are often hidden in between the irrelevant ones. A question thus natu-
rally arises: to what extent can such noisy Web images and videos be utilized for
labeling-free video recognition? In this paper, we propose a novel approach to
mutually voting for relevant Web images and video frames, where two forces are
balanced, i.e. aggressive matching and passive video frame selection. We validate
our approach on three large-scale video recognition datasets.

1 Introduction

This paper aims to classify actions and events in user-captured videos without human
labeling. The ubiquity of smart phones and surveillance cameras has created videos far
surpassing what we can watch. Instead of “eyeballing” the videos for potential use-
ful information, it is desirable to develop automatic video analysis and understanding
algorithms. Video recognition in the wild is a very challenging task: videos from the
same categories could vary greatly in lighting conditions, video resolutions, camera
movements, etc. Meanwhile, those from different categories could be inherently sim-
ilar (e.g. “apply eye makeup” and “apply lipstick”). To recognize actions and events,
one commonly adopted framework is encoding hand-crafted features (e.g. improved
dense trajectories [41]) into video-level representations with Fisher vectors [37]. There
are also recent approaches based on deep convolutional neural networks [11,20,29,40]
or recurrent networks [16,34]. All these approaches require and implicitly assume the
existence of large-scale labeled training data.

Manually labeling large amount of video examples is time-consuming and difficult
to scale up. On the other hand, there are abundant image and video examples on the
Web that can be easily retrieved by querying action or event names from image/video
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(a) Basketbal Dunk

(b)  Bench Press

(c)  Pizza Tossing

... ...

... ...

... ...

Figure 1. To utilize Web images and videos for video classification, our key observation is that
the query-relevant images and frames typically appear in both domains with similar appearances,
while the irrelevant images and videos have their own distinctiveness. Here we show Web images
(top) and video frames (bottom) retrieved by keywords basketball dunk, bench press and pizza
tossing from search engines. The relevant ones are marked in red.

search engines. These two observations motivate us to focus on Webly-supervised video
recognition by exploiting Web images and Web videos. Using video frames in addition
to images not only adds more diverse examples for training better appearance models,
but also allows us to train better temporal models, as found in [38,12].

However, there are two key difficulties that prevent us from using Web data directly.
First, the images and videos retrieved from Web search engines are typically noisy. They
may contain irrelevant results, or relevant results from a completely different domain
than users’ interest (e.g. cartoons or closeup shots of objects). To make the problem
worse, Web videos are usually untrimmed and could be several minutes to hours long.
Even for a correctly tagged video, the majority of its frames could be irrelevant to the
actual action or event. Our goal then becomes to identify query-relevant images and
video frames from the Web data which are both noisily and weakly labeled, in order to
train good machine learning models for action and event classification.

Our proposed method is based on the following observation: the relevant images
and video frames typically exhibit similar appearances, while the irrelevant images and
videos have their own distinctiveness. In Figure 1, we show the Web images (top) and
video frames (bottom) retrieved by keywords basketball dunk, bench press and pizza
tossing. We can see that for the basketball dunk example, non-slam-dunk frames in the
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video are mostly about a basketball game. The irrelevant Web images are more likely
to be cartoons. Similar observation also holds for bench press and pizza tossing, where
the irrelevant images include cartoons and product shots. This observation indicates
that selecting training examples from Web images and videos can be made easier, if
they could be mutually filtered to keep those in common!

Our algorithm to mutually filtering Web images and video frames goes as follows:
we first jointly choose images and video frames and try to match them aggressively. A
good match between the subset of images and the subset of video frames occurs when
both subsets are relevant to the action name, since “each irrelevant image or frame is
irrelevant in its own way”. We then impose a passive constraint over the video frames
to be selected, such that they are collectively not too far from the original videos. We
would like to be passive on the videos, in contrast to the images, because our ultimate
goal is for video action recognition. Otherwise, the aggressive matching mechanism
may end up with too few frames and causes a domain adaptation problem [28] between
the training set and test videos. Once the Web images and video frames are selected
for the actions or events of interest, they can be readily used to train action or event
classifiers with a wide range of tools. Some examples include SVM, CNN and LSTM.

The remaining sections are organized as follows. Section 2 describes related work
on video recognition, learning from the Web data and domain adaptation. Section 3
presents our approach to automatically selecting relevant examples from crawled im-
ages and videos to be used for Webly-supervised video recognition. Section 4 reports
empirical results, followed by discussion and conclusion in Section 5.

2 Related work

We discuss some related works to ours, including those on video recognition, learning
from weakly-labeled Web data, and domain adaptation.

2.1 Video Recognition

Video recognition has been widely explored in Computer Vision and Multimedia com-
munities. A survey can be found in [19]. Most of previous works use hand-designed
features to extract motion and appearance information for video representation. So far,
improved dense trajectories (iDT) [41] and its variants [22,42] show state-of-the-art
performance on video recognition when combined with Fisher vector coding [25].

Motivated by the success of convolutional neural networks on image recognition
tasks [21,39,30,45], there are also several attempts to apply deep learning techniques
for video recognition. Karpathy et al. [20] compare several architectures for action
recognition. Tran et al. [40] propose to learn generic spatial-temporal features with
3D convolutional filters. Simonyan et al. [29] propose a two-stream architecture to
capture both spatial and motion information with a pixel stream and an optical flow
stream respectively. Wang et al. [43] further improve the results by using deeper neu-
ral networks. Instead of learning representation using video data, recent works [47] for
complex event recognition have shown CNN features from models pre-trained from
ImageNet [5] achieve promising results. More recently, Recurrent Neural Networks
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(RNNs) are shown effective to model temporal information in videos. Srivastava et
al. [34] propose an LSTM encoder-decoder framework to learn video representations
in an unsupervised manner [34]. Donahue et al. [7] train a two-layer LSTM network
for action classification. Ng et al. [24] further demonstrate that a deeper LSTM net-
work can further improve the performance. All these approaches require high-quality
labeled training data. It remains unclear whether they can also obtain reasonable video
recognition results using noisy Web data.

2.2 Learning from weakly-labeled Web Data

Web data is inherently noisy. To handle this problem, the NEIL system [4] iteratively
refines its model using the discovered object relationships. LEVAN [6] clusters visual
concepts into groups, and rejects those with low visual consistency. Chen et al. [3] pro-
pose a semi-supervised approach to learning CNN parameters with easier examples first
and more complex examples later. Sun et al. [36] and Zhang et al. [48] propose to use
multi-modal data to learn visual concepts. In the video domain, Duan et al. [9] describe
a system that uses large amount of weakly labeled Web videos for visual event recog-
nition with transfer learning techniques. Habibian et al. [15] obtain textual descriptions
of videos from the Web and learn an embedding for few-example event recognition.
Nevertheless, these approaches all require humans to annotate a few positive videos
as “seeds”. Sun et al. [38] and Gan et al. [12] propose domain transfer approaches
from weakly-labeled Web images for action localization and event recognition tasks,
where each video is guaranteed to contain relevant snippets. In contrast, our approach
screens all the downloaded web videos (of a query) simultaneously and does not im-
pose the assumption of existing relevant frames over any individual video. To alleviate
the tedious human burden and achieve Webly-supervised action recognition, several
researchers have attempted to learn video concept detectors by crawling images and
videos [46,14,2,31] after querying the action/event name as well as associated queries.
However, the quality of the obtained data is lower compared with the fully-supervised
set, as the retrieved examples are not only noisy but also without spatiotemporal lo-
calization. The noisy and weak supervision is likely to confuse the training of video
classifiers.

Recently, the studies in [35] and soon followed by [44] propose solutions to train
deep convolutional networks (CNNs) when there exist mislabeled images in the training
set; the idea is to introduce a label noise layer placed at the top of CNNs. This paper is
different in that we focus on how to remove the noisy data before actually training any
classifiers. Our work can thus benefit most generic classifiers in addition to CNNs.

2.3 Domain Adaptation

In order to mutually vote for video frames and images that are relevant to the ac-
tion/event, we use maximum mean discrepancy (MMD) [17,33] to match them. MMD
has been widely used in domain adaptation [27], e.g., for feature representation learn-
ing [26], data instance re-weighting [17], landmark selection [13], and classifier regu-
larization [8]. Moreover, when it goes to the technical algorithm, our formulation shares
some spirit with the work [13] on landmark selection. However, we emphasize that the
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goal of our work is not for domain adaptation at all; neither images nor videos we re-
trieved are our target domain for testing. Instead, we tackle Webly-supervised video
recognition by learning classifiers from both relevant Web images and video frames.

3 Proposed Approach

In this section, we present the details of our approach to jointly selecting video frames
and images from the Web data, for the purpose of Webly-supervised video recogni-
tion. Our algorithm is built upon the motivating observation that “all relevant images
and frames to an action name are alike; each irrelevant image or frame is irrelevant in
its own way.” We firstly give the overall formulation, and then describe an alternative
optimization procedure for solving the problem.

3.1 Joint selection of action/event relevant Web video frames and Web images

For the ease of presentation, we first define the following notations. For each class
(of an action or event), we denote by I = {xm}Mm=1 the set of Web images, and by
V = {vn}Nn=1 the set of video frames, both returned by some search engines in response
to the query of the class name. The Web data are quite noisy; there are both relevant
items and outliers for the class. In order to filter out the relevant items, we introduce M
indicator variables α = [α1, . . . , αM]

>, where αm ∈ {0, 1} for each image xm, and N
indicator variables β = [β1, . . . , βN]

>, where βn ∈ {0, 1} for each video frame vn. If
αm = 1 (resp., βn = 1), the corresponding image xm (resp., video frame vn) will be
identified as a relevant item to the class.

Aggressive matching. If we conduct a pairwise comparison between a subset of the
images I with a subset of the video frames V , any class-irrelevant images or frames
would decrease the similarity between the two subsets, because the irrelevant items are
likely different from each other and also different from the relevant items. Therefore, we
can let the images and video frames mutually vote for class-relevant items, by matching
all possible pairwise subsets of them, respectively. Such a pair can be expressed by
({αmxm}Mm=1, {βnvn}Nn=1). The pairs with high matching scores have lower chance
of containing irrelevant images or video frames.

Because of the simplicity and effectiveness of the maximum mean discrepancy
(MMD) criterion [17], we adopt it in this work to measure the degree of matching
between any images and frames ({αmxm}Mm=1, {βnvn}Nn=1). We propose to minimize
the square of MMD such that the true negative images and video frames are expected
to be filtered out (i.e., the corresponding αm’s or βn’s will tend to be zeros). In other
words, the remaining images and video frames are expected to be the true positive items
for the class. Formally, we formulate the following optimization problem:

min
αm,βn∈{0,1}

∥∥∥∥∥ 1∑M
m=1 αm

M∑
m=1

αmφ(xm)− 1∑N
n=1 βn

N∑
n=1

βnφ(vn)

∥∥∥∥∥
2

H

, (1)
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where φ(·) is a mapping function which maps a feature vector from its original space
into a Reproducing Kernel Hilbert SpaceH.

The above is an integer programming problem, which is very computationally ex-
pensive to solve. Following [13], we relax Eq. (1) by introducing α̂m = αm∑M

m=1 αm
and

β̂n = βn∑N
n=1 βn

. Then, we arrive at the following optimization problem:

min
α̂∈[0,1]M,β̂∈[0,1]N

(
α̂>, β̂>

)( KI −KIV

−K>V I KV

)(
α̂

β̂

)
, (2)

where α̂ = [α1, . . . , αM]
>, β̂ = [β1, . . . , βN]

>, KI ∈ RM×M and KV ∈ RN×N

are the kernel matrices computed over the images and video frames respectively, and
K>V I = KIV ∈ RM×N denotes the kernel matrix computed between the images and
video frames, respectively. We use a Gaussian RBF kernel in our experiments.

Passive video frame selection. Note that Eq. (1) matches a subset of images with a
subset of video frames very aggressively. While there could be many pairs of subsets
whose images and frames are all relevant to the class, Eq. (1) only choose the one with
the best matching (in terms of the MMD measure). This strategy is effective in removing
true negative images and frames. However, it may also abandon many relevant ones
in order to reach the best matching. We thus introduce a passive term to balance the
aggressive matching.

Since our eventual task is video recognition, we propose to impose a passive regu-
larization over the selected video frames, such that they are collectively not too far from
the original videos:

min
β̂∈[0,1]M,W

∥∥∥V − V · diag(β̂) ·W∥∥∥2
F
, (3)

where V = [v1, . . . ,vN], and the variable W is a linear transformation matrix which
linearly reconstructs V from all the selected video frames, i.e., V · diag(β̂). In order to
have a low reconstruction error, one cannot keep too few video frames selected by the
variables β. On the other hand, it is fine to remove redundant frames from the candidate
set V . Our experiments show that removing the redundant frames incurs little loss on the
overall performance, and even improves the performance of an LSTM-based classifier.

Combining Eq. (2) and Eq. (3), we present our overall optimization problem as
follows:

min
α̂∈[0,1]M,

β̂∈[0,1]N,W

(
α̂>, β̂>

)( KI −KIV

−K>IV KV

)(
α̂

β̂

)
+ λ‖V − V · diag(β̂) ·W‖2F , (4)

where λ > 0 is a pre-defined tradeoff parameter to balance these two terms.

3.2 Optimization

To solve the optimization problem in Eq. (4), we develop a procedure to alternatively
update {α̂, β̂} and W until the value of the objective function in Eq. (4) converges.
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Updating W : When we fix α̂ and β̂, Eq. (4) reduces to

min
W
‖V − V · diag(β̂) ·W‖2F , (5)

whose closed-form solution can be derived to update W :

Wnew =
(
(V · diag(β̂))>(V · diag(β̂)

)†
(V · diag(β̂))>, (6)

where † denotes the pseudo-inverse of a matrix.
Updating α̂ and β̂: We then fix W and solve for α̂ and β̂. We first re-write Eq. (3) as:

min
β̂∈[0,1]N

∑
n,n′

β̂nβ̂n′ V >:n V:n′Wn′:W
>
:n︸ ︷︷ ︸

Ann′

−2
∑
n

β̂n (V
>
:n VW

>
n:)︸ ︷︷ ︸

bn

, (7)

where V:n and W:n represent the nth columns of V and W respectively, and Vn: and
Wn: denote the nth rows of V and W respectively. For simplicity, we define Ann′ =
V T:nV:n′Wn′:W

>
:n and bn = V >:nW

>
n: .

Substituting Eq. (7) to (4), we arrive at the following:

min
α̂∈[0,1]M, β̂∈[0,1]N

(
α̂>, β̂>

)( KI −KIV

−K>V I KV + λA

)(
α̂

β̂

)
− 2λ

(
α̂>, β̂>

)(0
b

)
, (8)

which can be efficiently solved by using off-the-shelf quadratic programming solvers.

3.3 Harvesting a labeling-free training set

After solving the optimization problem in Eq. (4), we have two ranking lists of the Web
images and Web video frames, respectively, according to the values of α̂ and β̂ at the
last iteration of our alternative optimization procedure. We can thus keep some per-
centage of the top ranked images and videos as our labeling-free training set for video
recognition. In our experiments, we examine different percentages from 95% to 10%.
We will also test the effectiveness of this labeling-free training set for different classi-
fiers, including SVM, fine-tuned deep neural networks, and an LSTM-based classifier.

4 Experiments

In this section, we evaluate the quality of our labeling-free training set under two fun-
damental tasks in video recognition: action recognition and event detection. We also
contrast our algorithm to some competing baselines, and compare our results with those
in the recent works on Webly-supervised video recognition.
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4.1 Datasets

In the experiments, we collect our training data by downloading Web images and videos
from the popular search engines with text queries. Specifically, given an action/event
class name as the search query, we download about 600 top-ranked images from Google
and 20 videos from YouTube. Duplicated images are removed by comparing color his-
togram features. To comply with the query format of Google image search, all occur-
rences of without, non- and not are replaced with the minus sign. For the downloaded
Youtube videos, we limit the length of each video to be less than fifteen minutes for
both memory and computational concerns. Most videos have the frame rate of 30 FPS.

For the test sets, we consider three well-labeled large-scale datasets.
UCF101 [32]. This is a large video dataset for action recognition collected from
YouTube. It consists of 101 action classes, 13K clips, and 27 hours of video data. The
task is generally considered challenging since many videos are captured under poor
lighting, with cluttered background, or severe camera motion. As our framework re-
quires no manually labeled training set, we only use the three provided test-splits to
test and evaluate our framework. Each test-split has around 3,800 videos. The averaged
classification accuracy over the three splits is used as the evaluation metric.
TRECVID MED 20131 and 20142. They are the two largest publicly available video
datasets for high-level event detection, and are introduced by NIST for participants in
the TRECVID competition. MED 2013 contains 20 events (E006 – E015 and E021
– E030), while MED 2014 has 20 events (E021 – E040). Each dataset has three dif-
ferent partitions: Background, 100EX and MEDTest. Background contains about 5000
background videos not belonging to any of the considered events; 100EX contains 100
positive videos for each event that is used as the training set in TRECVID; MEDTest
contains around 25,000 videos (over 960 hours of videos), with per-video ground truth
annotations for 20 event categories. We evaluate our approach on MEDTest and apply
the official average precision (AP) metric used in TRECVID contests.

Data Pre-processing. For both training and testing, the crawled videos from Web and
testing videos in MEDTest are decomposed into a set of frames. Using all video frames
would be computationally expensive and is not necessary, as there are lots of redun-
dancy among the frames. Thus, we only use the key frames. To extract these, we start
by detecting shot boundaries by calculating color histograms for all frames. For each
frame, we then calculate the L1 distance between the previous color histogram and the
current one. If the distance is larger than a threshold (we set it as 0.2 in this paper), this
frame is marked as a shot boundary. After detecting the shots, we define the key frames
each as the one in the middle of a shot. By doing this, we extract around 150 key frames
for a 5 minute video.

Since some videos of the three large-scale datasets are also collected from Web, we
check whether our crawled videos unintentionally include any videos in the testing set.
Specifically, we extract the fc6 features using VGGNet19 for each key frame in our

1 http://nist.gov/itl/iad/mig/med13.cfm
2 http://nist.gov/itl/iad/mig/med14.cfm

http://nist.gov/itl/iad/mig/med13.cfm
http://nist.gov/itl/iad/mig/med14.cfm
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collected videos and the videos in testing set. Then we compute the pairwise distances.
We find that there are no overlapped videos.

4.2 Action Classification Experiment

Experiment setup. Here we use the UCF101 dataset for evaluation. Our framework
automatically harvests a labeling-free training set. A high-quality training set is sup-
posed to be able to produce all kinds of good action classifiers. We thus examine three
types of classifiers in our experiments:

– CNNs [21]: CNNs pre-trained from ImageNet have been proven to generalize well
to action recognition tasks with domain-specific fine-tuning [29]. We choose the
VGGNet19 [30] released by Oxford to conduct experiments. To fine-tune the VG-
GNet19, we use the Caffe [18] toolbox, take selected Web images/video frames as
inputs, and set the width of the last fully-connected layer and the softmax layer as
the number of action categories. We initialize the network with pre-trained weights,
except for the last fully-connected layer which is randomly initialized. Each key
frame/image is resized with the shorter side to be 256 pixels which is compatible
with the input requirement of VGGNet19. During training, all data are randomly
shuffled, and organized as mini-batches with the size of 128 for VGGNet19 fine-
tuning using stochastic gradient descend. The learning rate starts from 10-4 and
decreases to 10-5 after 20K iterations, then to 10-6 after 40K iterations. The train-
ing is stopped after 50K iterations. For testing, to predict an action label for a video,
we average the corresponding prediction scores of all the key frames of the video.

– LSTM [16]: We feed the selected video frames into an LSTM with softmax clas-
sifier. We use the LSTM implemented by Caffe [18], and set the rolling time k as
25 and the number of hidden state as 256. The LSTM weights are learnt by using
the BPTT algorithm. During training, we set the size of mini-batch as 10. And the
learning rate starts from 10-3 and decreases to 10-4 after 50K iterations. The train-
ing is stopped after 80K iterations. For testing, the LSTM classifier directly gives a
video-level prediction.

– SVM: we extract the fc6 features of pre-trained VGGNet19 for images or video
frames, and train a multi-class SVM classifier using the LibLinear toolbox [10] by
fixing soft margin cost as 1. Similarly to the CNN classifier, we use late fusion
(average) of the frame-level scores to generate the video-level predictions.

For testing on the UCF101 dataset, we uniformly sample 25 frames per video as sug-
gested in [29], and then utilize a CNN/LSTM/SVM classifier to make predictions.

Baseline methods. To evaluate our framework, we compare against several state of the
art noise removal approaches as baselines:

– Validation: For each action class, we split the crawled data U into K equal and
disjoint subsets. Each subset is scored by a binary SVM classifier trained on the rest
K−1 subsets as positive and some random images of the other classes as negative.
Every data point in U is predicted once. Negative-scored data are considered as
noise and rejected. We use the implementation of LibSVM [1] with default hyper
parameter λ = 1 to conduct experiments. In our experiment, we set K as 5.
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Table 1. Webly-supervised action recognition results on UCF101, by fine-tuning VGGNet19
using both Web images and Web video frames. (x%: percentage abandoned)

Method # Number of training data Acc (%)
All crawled data 426K 64.7

Validation 368K 66.5
One-class SVM (5%) 405K 65.4
One-class SVM (10%) 384k 65.9
One-class SVM (15%) 363k 65.9

Unsupervised One-class SVM (5%) 405K 66.6
Unsupervised One-class SVM (10%) 384k 66.9
Unsupervised One-class SVM (15%) 363k 66.4

Landmarks (5%) 405K 67.9
Landmarks (10%) 384k 68.3
Landmarks (15%) 363k 67.7

Ours (5%) 405K 68.7
Ours (10%) 384k 69.3
Ours (15%) 363k 68.9

– One-class SVM: We use LibSVM [1] to conduct the experiment.
– Unsupervised One-class SVM: We implemented Liu et al.’ method [23] our-

selves and followed the suggested details for tuning the hyper-parameters (e.g. us-
ing Gaussian kernels, soft labels and the number of neighbors).

– Landmarks: The concept of landmarks [13] is originally defined as a subset of data
point from source domain that match the target domain. In our problem, we first
treat Web images as the source domain (and Web video frames as the target domain)
to select “landmark” Web images. Then we reverse the source and target domains
to select video frames. We use the code provided by authors for the experiments.

Table 2. Webly-supervised action recognition results on UCF101, by fine-tuning VGGNet19
using either Web images or Web video frames. (x%: percentage abandoned)

Data
Method

All crawled data Validation
One-class SVM Landmarks Ours
5% 10% 15% 5% 10% 15% 5% 10% 15%

images 61.2 61.7 61.2 62.1 61.7 63.9 64.1 64.3 64.7 64.9 65.1
videos 57.6 58.1 58.2 58.4 58.6 58.0 58.2 58.1 58.2 58.3 58.5

Results on UCF101. Table 1 reports the Webly-supervised action recognition results
when our and the baseline approaches are used to select both Web images and video
frames for fine-tuning CNNs. For one-class SVM, landmarks, and our own approach,
we need to define the amount of data to be rejected. For fair comparison, we report
the performances when rejecting 5%, 10%, and 15% Web data for all the methods. To
be noted, we take both Web images and video frames together as input for Validation
and One-class SVM, and then keep the relevant training samples. For landmark and our



Webly-supervised Video Recognition by Mutually Voting for Web Images & Video 11

Table 3. Webly-supervised action recognition results on UCF101, by training a LSTM classifier
using top 25 frames for each video.

Method Acc (%)
Random 56.3

Validation 63.8
One-class SVM 64.6

Landmarks 64.2
Ours 65.1

0.1 1 10

58

60

62

64

66

68

70

λ

A
cc

 (
%

)

 

 

images

videos

images+videos

Figure 2. Action recognition accuracies (Acc %) w.r.t the parameter λ on UCF101.

own approach, we use Gaussian RBF kernels and fix the bandwidth parameter as 1 in
all experiments. We solve the quadratic programming problem by using a Gurobi solver
(http://www.gurobi.com). For our own approach, we fixed λ = 10 in Eq. (1)
for all experiments, and we examine its effect when λ is set to 0.1, 1, and 10 with reject
ratio of 10% in Figure 2. We also experiment with either of Web images or Web video
frames for fine-tuning VGGNet19 in Table 2, with the top-ranked 25 frames per video
for the LSTM classifier in Table 3, and with different percentages of Web images for
the SVM classifier in Table 4.

Table 4. Webly-supervised action recognition results on UCF101, by a SVM classifier using only
Web images. (x%: percentage abandoned).

Data
Method

All crawled data Validation
One-class SVM Landmarks Ours
5% 10% 15% 5% 10% 15% 5% 10% 15%

images 53.2 54.1 54.2 54.9 54.6 55.1 55.4 55.6 56.0 56.4 56.6

From Table 1, we have two key observations. (1) The action recognition perfor-
mance could be improved if some noisy data are removed by using one-class SVM,
validation, landmarks, unsupervised one-class SVM and our proposed approach. These
results validate the necessity of our study. (2) Our proposed approach to jointly selecting
relevant images and video frames is more effective than the competing baselines, such
as one-class SVM, unsupervised one-class SVM and Validation. In Table 2, we can find

http://www.gurobi.com
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that the proposed framework can consistently achieve better results when using images
only for fine-tuning CNN, with different ratios to reject the noise data. Under video
frames only, the improvement of our approach compared with others is marginal, but
ours still achieves better result compared with directly using the crawled data. Results
in Table 4 shows that our approach is also a good companion for traditional SVM based
classifications.

Table 5. Webly-supervised action recognition results on UCF101, by fine-tuning VGGNet19
using only 50% and 10% video frames (50% and 90% abandoned).

Method # Number of training data Acc (%)
All crawled data 360K 57.6
One-class SVM (50%) 180K 55.7
One-class SVM (90%) 36K 49.8
Landmarks (50%) 180K 54.9
Landmarks (90%) 36K 52.1
Ours (50%) 180k 58.8
Ours (90%) 36k 58.2

The effectiveness of removing redundant frames. In addition to removing noisy or
outlier images and video frames, our approach also reduces redundant frames. The re-
sults in Table 3 show that frames selected by our proposed framework can achieve better
performance than other approaches. We speculate that LSTM needs diverse sample to
model the internal relationship in a sequence, and repetitively redundant frames would
cripple its modeling capabilities. This requirement is a good match to our formulation.

Moreover, the redundant frames provide little extra information for the other classi-
fiers either. To further evaluate whether our proposed framework can reduce the amount
of training data to reach reasonable action classification performances when fine-tuning
VGGNet19, we further conduct experiment by rejecting 50% and 90% frames during
training. Experiment results are shown in Table 5. Surprisingly, the performance of our
proposed approach has not dropped much from Table 2, even slightly better when re-
jecting 50% video frames. However, one-class SVM and landmark-based approach de-
crease significantly. These results validate the effectiveness of our approach to reducing
redundant video frames. The remaining video frames can maintain most of discrimina-
tive information and enjoy a lower computation cost.

Comparisons with state of the arts that use fully labeled data. In Table 6, we add
comparisons with the state-of-the-art results that are obtained by training classifiers
from fully labeled training data. We directly quote the numbers from the published
papers. Among the selected systems, LRCN [7], LSTM composite model [34], spatial
stream network [29], and Karpathy et al. [20] are based on pure appearance features
from static images. IDT+FV [41], C3D [40] include motion features from videos as
well. We find that the performance of our Webly-supervsied approach is comparable to
the spatial networks which use positive videos, but still has gaps when compared with
motion features.
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Table 6. Comparisons with state of the arts results using fully labeled data on UCF101.

Method Acc (%)
LRCN [7] 71.1

LSTM composite model [34] 75.8
IDT + FV [41] 87.9

C3D [40] 82.3
Karpathy et al. [20] 65.4

Spatial stream network [29] 73.0
Ours (spatial) 69.3

4.3 Webly-supervised Multimedia Event Detection

In order to have a better understanding of our approach, we also apply it to the large-
scale TRECVID MED 2013 and 2014 datasets. There have been some systems on the
MED tasks which learn event detectors from the Web data. While we only use the class
names to download Web images and videos, the existing systems often employ addi-
tional queries like event related concepts. We contrast our work to the following: (1)
Concept Discovery [2], (2) Bi-Concept [14], (3) Composite Concepts [14], (4) Event-
Net [46], and (5) Selected Concepts [31]. Approach (1) uses Web images to train event
detectors, (2) – (4) use Web videos to train event detectors, and (5) firstly trains concept
detectors using Web images, uses them to rank testing videos, and then re-trains event
detectors with the top-ranked testing videos. We note that the strategy of (5) can be
readily added as a post-processing component to other methods as well.

Table 7. Comparisons with other state-of-the-art zero-shot/webly-supervised event detection sys-
tems on MEDTest 2013.

Method mAP (%)
Concept Discovery [2] 2.3

Bi-concept [14] 6.0
Composite Concept [14] 6.4

EventNet [46] 8.9
Selecting [31] 11.8

Ours 16.1

For a fair comparison, we report our results on MEDTest 2013 and directly com-
pare them with state-of-the-art results quoted from original papers. The results in Ta-
ble 7 show that our framework outperforms the other systems by a large margin. For
additional analysis, we also provide per-event-class results in Figure 3 and Figure 4,
respectively on MEDTest 2013 and MEDTest 2014. The numbers are reported of using
both all crawled data and our selected data (reject ratio 10%) to fine-tune VGGNet19.
We observe performance gains for 17 out of 20 classes on MEDTest 2013 and 18 of
20 classes on MEDTest 2014, verifying the effectiveness of our approach to removing
noisy data from the Web images and Web video frames.
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Figure 3. Per-event detection result compared with All crawled data on MEDTest 2013 dataset.
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Figure 4. Per-event detection result compared with All crawled data on MEDTest 2014 dataset.

Implementation details of fine-tuning. . We use the Caffe [18] toolbox for fine-tuning
CNNs, with a VGGNet19 model [30] that is pre-trained on ImageNet [5] by the authors.
The learning rate starts from 10-4 and decreases to 10-5 after 25K iterations, then to 10-6

after 50K iterations. The training is stopped after 65K iterations. For testing, to predict
an event label for a video, we average the corresponding prediction scores of all the key
frames of the video. Momentum and weight decay coefficients are again set to 0.9 and
0.0005. All layers are fine-tuned, except the last fully-connected layer, which has to be
changed to produce an output of event classes.

5 Conclusions

In this paper, we investigated to what extent the Web images and Web videos could be
leveraged to conduct Webly-supervised video recognition. To distill useful data from
the noisy Web ones, we proposed a unified approach to jointly removing irrelevant Web
images and (also redundant) video frames. We developed an efficient alternative opti-
mization procedure to solve our proposed formulation. Extensive experiments, for both
action recognition and event detection, validate that our framework not only outper-
forms competing baselines, but also beats existing systems which also exploit Web data
for event detection. We expect this work to benefit future research on large-scale video
recognition tasks.
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