
End-to-End Learning of Motion Representation for Video Understanding

Lijie Fan∗2, Wenbing Huang∗1, Chuang Gan3, Stefano Ermon4, Boqing Gong1, Junzhou Huang1

1 Tencent AI Lab, 2 Tsinghua University, Beijing, China
3 MIT-Watson Lab, 4 Department of Computer Science, Stanford University

flj14@mails.tsinghua.edu.cn, hwenbing@126.com, ganchuang1990@gmail.com

ermon@cs.stanford.edu, boqinggo@outlook.com, jzhuang@uta.edu

Abstract

Despite the recent success of end-to-end learned repre-
sentations, hand-crafted optical flow features are still widely
used in video analysis tasks. To fill this gap, we propose
TVNet, a novel end-to-end trainable neural network, to learn
optical-flow-like features from data. TVNet subsumes a spe-
cific optical flow solver, the TV-L1 method, and is initialized
by unfolding its optimization iterations as neural layers.
TVNet can therefore be used directly without any extra learn-
ing. Moreover, it can be naturally concatenated with other
task-specific networks to formulate an end-to-end architec-
ture, thus making our method more efficient than current
multi-stage approaches by avoiding the need to pre-compute
and store features on disk. Finally, the parameters of the
TVNet can be further fine-tuned by end-to-end training. This
enables TVNet to learn richer and task-specific patterns
beyond exact optical flow. Extensive experiments on two
action recognition benchmarks verify the effectiveness of the
proposed approach. Our TVNet achieves better accuracies
than all compared methods, while being competitive with the
fastest counterpart in terms of features extraction time.

1. Introduction
Deep learning and especially Convolutional Neural Net-

works (CNNs) have revolutionized image-based tasks, e.g.,
image classification [16] and objective detection [32]. How-
ever, the progress on video analysis is still far from sat-
isfactory, reflecting the difficulty associated with learning
representations for spatiotemporal data. We believe that the
major obstacle is that the distinctive motion cues in videos
demand some new network designs, which are yet to be
found and tested.

While there have been some attempts [36] to learn fea-
tures by convolution operations over both spatial and tem-
poral dimensions, optical flow is still widely and effectively

∗indicates equal contributions. This work was conducted when Lijie
Fan was served as a research intern in Tencent AI Lab.

Action Representation Learning

Optical-flow TVNet feature without training TVNet feature after training

Figure 1. Visualization results of optical-flow-like motion features
by TV1 [42], TVNet (without training) and TVNet (with training).

used for video analysis [28, 9, 10, 40, 15, 29]. The optical
flow, as the name implies, captures the displacements of
pixels between two consecutive frames [42]. Thus, applying
the optical flow to the video understanding tasks enables
one to model the motion cues explicitly, conveniently, but
inefficiently. It is often computationally expensive to es-
timate the optical flows. A currently successful example
of applying optical flow to video understanding is the two-
stream model [33], where a CNN is trained on the optical
flow data to learn action patterns. Various extensions of the
two-stream model have been proposed and achieved state-of-
the-art results on serval tasks including action recognition
[28, 9, 10, 40] and action detection [15, 29].

Despite the remarkable performance, current optical-flow-
based approaches have notable drawbacks:

• Training is a two-stage pipeline. In the first stage,
the optical flow for every two consecutive frames is
extracted via the optimization-based method (e.g. TV-
L1 [42]). In the second stage, a CNN is trained on the
extracted flow data. These two stages are separated and
the information (e.g. gradients) from the second stage
cannot be used to adjust the process of the first stage.

• Optical flow extraction is expensive in space and
time. The extracted optical flow has to be written to

the disk for both the training and testing. For the UCF-
101 dataset [34] which contains about 10 thousands
videos, extracting optical flows for all data via the TV-
L1 method takes one GPU-day, and storing them costs
more than one TeraByte of storage for the original fields
as floats (often a linear JPEG normalization is required
to save storage cost [33]).

To tackle the above mentioned problems, we propose a
novel neural network design for learning optical-flow like
features in an end-to-end manner. This network, named
TVNet, is obtained by imitating and unfolding the iterative
optimization process of TV-L1 [42]. In particular, we formu-
late the iterations in the TV-L1 method as customized layers
of a neural network. As a result, our TVNet is well-grounded
and can be directly used without additional training by any
groundtruth optical flows.

Furthermore, our TVNet is end-to-end trainable, and can
therefore be naturally connected with a tasks-specific net-
work (e.g. action classification network) to form a “deep-
er” end-to-end trainable architecture. As a result, it is not
necessary to pre-compute or store the optical-flow features
anymore.

Finally, by performing the end-to-end learning, it is pos-
sible to fine-tune the weights of the TVNet that is initialized
as a standard optical flow feature extractor. This allows us to
discover richer and task-specific features (compared to the
original optical flow) and thus to deliver better performance.

To verify the effectiveness of the proposed architecture,
we perform experimental comparisons between the proposed
TVNet and several competing methods on two action recog-
nition benchmarks (HMDB51 [24] and UCF101 [34]).

To sum up, this paper makes the following contributions:
• We develop a novel neural network to learn motion-

s from videos by unfolding the iterations of the TV-
L1 method to customized neural layers. The network,
dubbed TVNet, is well-initialized and end-to-end train-
able.
• Despite being initialized as a specific TV-L1 architec-

ture, the proposed TVNet can be further fine-tuned to
learn richer and more task-oriented features than the
standard optical flow.
• Our TVNet achieves better accuracies than other ac-

tion representation condunterparts (e.g., TV-L1 [42],
FlowNet2.0 [18]) and 3D Convnets [36] on the two ac-
tion recognition benchmarks, i.e.,72.6% on HMDB51
and 95.4% on UCF101.

2. Related Work
Video understanding, such as action recognition and ac-

tion similarity detection, has attracted a lot of research at-
tention in the past decades. Different from static image
understanding, video understanding requires more reliable
motion features to reflect the dynamic changes occurring in

videos. Laptev et al. [25] proposed a spatio-temporal interest
points (STIPs) method by extending Harris corner detectors
to 3-dimensional space to capture motion. Similarly, the
3D extensions of SIFT and HOG have also been investigat-
ed [7] and [22], respectively. Wang et al. [37] proposed
improved Dense Trajectories (iDT), where the descriptors
were obtained by tracking densely sampled points and de-
scribing the volume around the tracklets by histograms of
optical flow (HOF) and motion boundary histograms (MBH).
Despite its stat-of-the-art performances, IDT is computation-
ally expensive and becomes intractable on large-scale video
dataset.

Motivated by the promising results of deep networks on
image understanding tasks, there have also been a number of
attempts to develop deep architectures to learn motion fea-
tures for video understanding [20, 21, 28, 13, 17, 43, 14, 12].
The leading approaches fall into two broad categories. The
first one is to learn appearance and motion jointly by extend-
ing 2D convolutional layers to 3D counterparts [36, 20],
including recently proposed I3D [6] and P3D [30]. Howev-
er, modeling motion information through 3D convolutional
filters is computationally expensive, and large-scale train-
ing videos are needed for desired performance [6]. The
other category of work is based on two-stream network-
s [33, 28, 40, 9, 10, 26]. This line of approaches trains two
networks, one using the appearance (i.e., RGB) data and
the other one using hand-crafted motion features such as
optical flow to represent motion patterns. In contrast, in our
method, the motion descriptor is learned with a trainable
neural network rather than hand-crafted. As a consequence,
our optical-flow-like motion features can be jointly learned
and fine-tuned using a task-specific network. Additionally,
we do not need to store and read the optical flow from disk,
leading to significant computational gains.

A recent research topic is to estimate optical flow by
CNNs [8, 35, 31, 18, 26, 4]. These approaches cast the
optical flow estimation as an optimization problem with
respect to the CNN parameters. A natural idea is to combine
the flow CNN with the task-specific network to formulate an
end-to-end model (see for example in [45]). Nevertheless,
an obvious issue of applying the flow nets is that they require
thousands of hundreds of groundtrue flow images to train
the parameters of the flow network to produce meaningful
optical flows (see [8]). For real applications, it is costly to
obtain the labeled flow data. In contrast, our network is
well initialized as a particular TV-L1 method and is able to
achieve desired performance even in its initial form (without
fine-tuning).

Recently, Ng et al. [27] proposed to train a single stream
convolutional neural network to jointly estimate optical flow
and recognize actions, which is most relevant to our work.
To capture the motion feature, they formulated FlowNet [11]
to learn the optical flow from synthetic ground truth data.

Though the results are promising, the approach still lags
behind the state of the arts in terms of accuracy compared
to traditional approaches. This is due to the well known gap
between synthetic and real videos. Contrastly, our network
is formulated by unfolding the TV-L1 method that has been
applied successfully to action recognition and we do not rely
on the groundtruth of optical flow for training. Thus, our
network combines the strengths of both TV-L1 and deep
learning.

3. Notations and background
3.1. Notations

A video sequence can be written as a function of three
arguments, It(x, y), where x, y index the spatial dimensions
t is for the time dimension. Denote by Ω all the coordinates
of the pixels in a frame. The function value It(x, y) corre-
sponds to the pixel brightness at position x = (x, y) ∈ Ω
in the t-th video frame. A point x may move from time to
time across the video frames, and the optical flow is to track
such displacement between adjacent frames. We denote by
ut(x) = (ut1(x), ut2(x)) the displacement of the point x
from time t to the next frame t+1. We omit the superscript t
and/or argument x from ut(x) when no ambiguity is caused.

3.2. The TV-L1 method

Among the existing approaches to estimating optical
flows, the TV-L1 method [42] is especially appealing for its
good balance between efficiency and accuracy. We review it
in detail in this subsection to make the paper self-contained.
The design of our TV-Net (cf. Section 4) is directly motivated
by the optimization procedure of TV-L1.

The main formulation of TV-L1 is as follows,

min
u(x),x∈Ω

∑
x∈Ω

(|∇u1(x)|+ |∇u2(x)|) + λ|ρ(u(x))|, (1)

where the first term |∇u1|+ |∇u2| accounts for the smooth-
ness condition, while the second term ρ(u) corresponds to
the famous brightness constancy assumption [42]. In par-
ticular, the brightness of a point x is assumed to remain
the same after it shifts to a slightly different location in
the next frame, i.e., I0(x + u) ≈ I1(x). Accordingly,
ρ(u) = I1(x+ u)− I0(x) is defined in order to penalize
the brightness difference in the second term. Since the func-
tion I1(x+ u) is highly non-linear with respect to u, Zach
et al. [42] approximate the brightness difference ρ(u) by the
Taylor expansion at an initial displacement u0, leading to
ρ(u) ≈ ∇I1(x+ u0)(u− u0) + I1(x+ u0)− I0(x).

The above gives a first-order approximation to the original
problem and linearizes it to an easier form. Furthermore, the
authors introduce an auxiliary variable v to enable a convex
relaxation of the original problem

min
{u,v}

∑
x∈Ω

(|∇u1|+ |∇u2|) +
1

2θ
|u− v|2 + λ|ρ(v)|, (2)

Algorithm 1 The TV-L1 method for optical flow extraction.
Hyper-parameters: λ, θ, τ, ε,Nwarps, Niters
Input: I0, I1,u

0

p1 = [p11,p12] = [0,0];
p2 = [p21,p22] = [0,0];
for w = 1 to Nwarps do

Warp I1(x+ u0),∇I1(x+ u0) by interpolation;
ρ(u) = ∇I1(x+u0)(u−u0)+I1(x+u0)−I0(x),
n = 0;
while n < Niters and stopping_criterion > ε do

v =

λθ∇I1 ρ(u) < −λθ|∇I1|2,
−λθ∇I1 ρ(u) > λθ|∇I1|2,
−ρ(u) ∇I1

|∇I1|2 otherwise,
where ∇I1 represents∇I1(x+ u0) for short;
ud = v + θdiv(pd), d = 1, 2;
pd = pd+τ/θ∇ud

1+τ/θ|∇ud| , d = 1, 2;
n = n+ 1;

end while
end for

in which a very small θ can force u and v to be equal at
the minimum. This objective is minimized by alternatively
updating u and v. The details of the optimization process
are presented in Algorithm 1, where the variables p1 and p2

are the dual flow vector fields.

Understanding Algorithm 1. The core computation chal-
lenge in the algorithm is on the pixel-wise computations of
the gradients (i.e.,∇I1 and∇ud), divergence (i.e., div(p)),
and warping (i.e., I1 and∇I1). The details of the numerical
estimations are provided as below.

• Gradient-1. The gradient of the image I1 is computed
by central difference:

∂I1(i, j)

∂x
=

{
I1(i+1,j)−I1(i−1,j)

2 1 < i < W,
0 otherwise.

(3)

We can similarly compute ∂
∂yI1(i, j) along the j index.

• Gradient-2. The gradient of each component of the
flow u is computed via the forward difference:

∂ud(i, j)

∂x
=

{
ud(i+ 1, j)− ud(i, j) 1 ≤ i < W,
0 otherwise, (4)

where d ∈ {1, 2}. Also, ∂
∂yud(i, j) can be similarly

computed by taking the difference on the j index.

• Divergence. The divergence of the dual variables p is
computed via the backward difference:

+
Bicubic-

Warp

+
Gradient_1

Divergence +
Gradient_2 +

+
Bilinear
-Warp

+

Cov_1

Cov_2 +
Cov_3 +

TV-L1

TVNet

+
Bicubic-

Warp

+
Gradient_1

Divergence +
Gradient_2 +

+
Bilinear
-Warp

+

Cov_1

Cov_2 +
Cov_3 +

RGB Images

TV
N

e
t

Action reprentation

CNN

Label

TV
N

e
t

(a) (b)

Iter_1 Iter_n

Block_1 Block_n

Figure 2. (a) Illustration of the process for unfolding TV-L1 to TVNet. For TV-L1, we illustrate each iteration of Algorithm 1. We reformulate
the bicubic warping, gradient and divergence computations in TV-L1 to bilinear warping and convolution operations in TVNet. (b) The
end-to-end model for action recognition.

div(pd)(i, j)

=

 pd1(i, j)− pd1(i− 1, j) 1 < i < W,
pd1(i, j) i = 1,
−pd1(i− 1, j) i = W.

+

 pd2(i, j)− pd2(i, j − 1) 1 < j < H,
pd2(i, j) j = 1,
−pd2(i, j − 1) j = H.

(5)

Another pixel-wise estimation is the brightness I1(x+u0) .
It is often obtained by warping the frame I1 along the initial
flow field u0 using the bicubic interpolation.

Multi-scale TV-L1. Since the Taylor expansion is ap-
plied to linearize the brightness difference, the initial flow
field u0 should be close to the real field u to ensure a smal-
l approximation error. To achieve this, the approximation
fieldu0 is derived by a multi-scale scheme in a coarse-to-fine
manner. To be specific, at the coarsest level, u0 is initial-
ized as the zero vectors and the corresponding output of
Algorithm 1 is applied as the initialization of the next level1.

4. TVNets
This section presents the main contribution of this paper,

i.e., the formulation of TVNet. The central idea is to imitate
the iterative process in TV-L1 and meanwhile unfold the
iterations into a layer-to-layer transformations, in the same
spirit as the neural networks.

4.1. Network design

We now revisit Algorithm 1 and convert its key compo-
nents to a neural network. First, the iterations in Algorithm 1
can be unfolded as a fixed-size feed-forward network if we

1Figure 1 in the supplementary material demonstrates the framework
with three-scale optimization.

fix the number of the iterations within the while-loop to be
Niters (see Figure 2). Second, each iteration (i.e. layer) is
continuous and is almost everywhere smooth with respect to
the input variables. Such property ensures that the gradients
can be back-propagated through each layer, giving rise to an
end-to-end trainable system.

Converting Algorithm 1 into a neural network involves
efficiency and numerical stability considerations. To this end,
we modify Algorithm 1 by replacing the computations of the
gradients and divergence Eq. (3)-(5) with specific convolu-
tions, performing warping with bilinear interpolation, and
stabilizing the division calculations with a small threshold.
We provide the details below.

Convolutional computation. The most tedious part in
Algorithm 1 is the pixel-wise computation of Eq. (3)-(5).
We propose to perform all these calculations with specific
convolutional layers. We define the following kernels,

wc = [0.5, 0,−0.5],wf = wb = [−1, 1]. (6)
Thus, for the pixels in the valid area (1 < i < W), Eq. (3)-
(4) can be equivalently written as

∂

∂x
I1 = I1 ∗wc, (7)

∂

∂x
ud = ud ∗wf , (8)

where ∗ defines the convolution operation. Eq. (6) only
describes the kernels along the x axis. We transpose them to
obtain the kernels along the y axis.

The divergence in Eq.(5) is computed by a backward
difference, but the convolution is computed in a forward
direction. To rewrite Eq.(5) in convolution form, we need
to first shift the pixels of pd1 right (and shift pd2 down) by
one pixel and pad the first column of pd1 (and the first row
of pd2) with zeros, leading to p̂d1 (and p̂d2). Then, Eq.(5)
can be transformed to

div(pd) = p̂d1 ∗wb + p̂d2 ∗wT
b , (9)

where wT
b denotes the transposition of wb. We then refine

the boundary points for the outputs of Eq. (7)-(9) to meet the
boundary condition in Eq. (3)-(5).

Bilinear-interpolation-based warping. The original
TV-L1 method uses bicubic interpolation for the warping
process. Here, for efficiency reasons, we adopt bilinear in-
terpolation instead. Note that the bilinear interpolation has
been applied successfully in previous works such as the spa-
tial transformer network [19] and the optical flow extraction
method [11]. We denote by Iw1 = I1(x+ u0) the warping.
Then, we compute

Iw1 (i, j) =

H∑
n

W∑
m

I1(m,n) max(0, 1− |i+ u1 −m|)

max(0, 1− |j + u2 − n|), (10)
where u1 and u2 are respectively the horizontal and vertical
flow values of u0 at position (i, j). We follow the details
in [19] and derive the partial gradients for Eq. (10) with
respect to u0 as the bilinear interpolation is continuous and
piecewise smooth.

Numerical stabilization. We need to take care of the
division in Algorithm 1, i.e., v = −ρ(u) ∇I1

|∇I1|2 . The opera-
tion is ill-defined when the denominator is equal to zero. To
avoid this issue, the original TV-L1 method checks whether
the value of |∇I1|2 is bigger than a small constant; if not, the
algorithm will set the denominator to be this small constant.
Here, we utilize a soft non-zero transformation by rewriting
the update of v as v = −ρ(u) ∇I1

|∇I1|2+ε , where a small value
ε > 0 is added to the denominator. This transformation is
more efficient as we do not need to explicitly check the value
of |∇I1|2 at each step.

Another division computation in Algorithm 1 is pd =
pd+τ/θ∇ud

1+τ/θ|∇ud| . At first glance, this division is safe since the
denominator is guaranteed to be larger than 1. However, as
we will see later, its gradients contain division computations
where the denominators can be zero. Thus, we apply the
soft transformation by adding a small value ε > 0 to the
denominator, namely,

pd =
pd + τ/θ∇ud

1 + τ/θ
√
∇u2

d1 +∇u2
d2 + ε

.

(11)
The gradient of pd with respect to∇ud1 is in this form

∂

∂∇ud1
pd = a− b√

∇u2
d1 +∇u2

d2 + ε
, (12)

where a and b are well-defined variables (the details are
provided in the supplementary material). In practice, both
∇ud1 and ∇ud2 are often equal to zero within the still area
of the image (e.g., the background). As such, the computa-
tion of the gradients would encounter a division by zero if
the positive term ε was not added in Eq. (12).

Multi-scale version. The multi-scale TVNet is formulat-
ed by directly unfolding the multi-scale version of TV-L1.
A higher scale takes as input the up-sampled output of its
immediate lower scale. There are multiple warps at each
scale and each warp consists of multiple iterations. Hence,
the total number of iterations of the multi-scale TVNets are
Nscales ×Nwarps ×Niters.

4.2. Going beyond TV-L1

In the previous section, we have transformed the TV-
L1 algorithm to a feed-forward network. However, such
network is parameter-free and not learnable. To formulate
a more expressive network, we relax certain variables in
TV-L1 to be trainable parameters. Relaxing the variables
render TVNet not equivalent to TV-L1 any more. However,
it allows the network to learn more complex, task-specific
feature extractors by end-to-end training.

The first variable we relax is the initialization optical field
u0. In TV-L1, u0 is set to be zero. However, from the
optimization prospective, zero initialization is not necessar-
ily the best choice; making u0 trainable will enable us to
automatically determine a better initialization for the opti-
mization. We also propose to relax the convolutional filters
in Eq. (7)-(9). The original convolutions are used to derive
the (numerical) gradients and divergences. Allowing the
convolutional filters to be trainable parameters will enable
them to discover more complex patterns in a data-driven
way. We will demonstrate the benefit of the trainable version
compared to the original architecture in our experiments.

4.3. Multi-task Loss

As discussed before, our TVNet can be concatenated
to any task-specific networks (e.g., the BN-Inception net
for action classification [40]) to perform end-to-end action
recogntion without the need of explicitly extracting the op-
tical flow data, as illustrated in Figure 2 (c). Because of
the end-to-end structure, the parameters of TVNet can be
fine-tuned by back-propagating gradients of the task-specific
loss. Additionally, since the original TV-L1 method is devel-
oped to minimize the energy function in Eq. (1), we can also
use this function as an additional loss function to force it to
produce meaningful optical-flow-like features. To this end,
we formulate a multi-task loss as

L = Lc + λLf . (13)

Here Lc is the action classification loss (e.g. the cross en-
tropy), Lf is defined in Eq. (1) where the exact computation
other than the Tailor approximation is applied to compute
ρ(u(x)), and λ is a hyper-parameter to trade-off these two
losses. We set λ = 0.1 in all our experiments and find that
it works well across all of them. Note that it is tractable
to compute the gradients of Lf as it has been translated to
convolutions and the bilinear interpolation (see § 4.1).

5. Experiments

This section performs experimental evaluations to verify
the effectiveness of the proposed TVNet. We first carry out a
complete comparison between TVNets of various structures
with the TV-L1 method regarding the optimization efficiency.
Then, we compare the performance of TVNets with state-of-

Table 1. The average EPEs on MiddleBurry. “Training u0” means
only u0 is trained; “All Training” means both u0 and the convo-
lution filters are trained. After training, TVNet-50 outperforms
TV-L1 significantly although TV-L1 has a much larger number of
optimization iterations (i.e., 1250).

Methods No training Training u0 All Training
TVNet-10 3.47 2.92 1.24
TVNet-30 3.01 2.04 0.40

TVNet-3-1-10 2.00 0.82 0.52
TVNet-1-3-10 2.81 2.17 0.46

TVNet-50 2.93 1.58 0.35
TV-L1-10 3.48 TV-L1-3-1-10 1.79
TV-L1-30 3.02 TV-L1-1-3-10 2.74
TV-L1-50 2.86 TV-L1-5-5-50 0.66

the-art methods on the task of action recognition2.
The three hyper-parameters, Nscales, Nwarps and Niters

determine the structure of the TVNet. For convenience,
we denote the TVNet with particular values of the hyper-
parameters as TVNet-Nscales-Nwarps-Niters. We denote
the architecture as TVNet-Niters for short when both
Nscales andNwarps are fixed to be 1. For the TV-L1 method,
the hyper-parameters are fixed as Nscales = Nwarps = 5
and Niters = 50 in all experiments unless otherwise speci-
fied. Our methods are implemented by the Tensorflow plat-
form [1]. Unless otherwise specified, all experiments were
performed on 8 Tesla P40 GPUs.

5.1. Comparison with TV-L1

Initialized as a particular TV-L1 method, the parameters
of TVNet can be further finetuned as discussed in Section 4.2.
Therefore, it is interesting to evaluate how much the training
process can improve the final performance. For this purpose,
we compare the estimation errors between TVNet and TV-L1
on the optical flow dataset, i.e., the MiddleBurry dataset [2].

Dataset. The MiddleBurry dataset [2] is a widely-used
benchmark for evaluating different optical flow extraction
methods. Here we only perform evaluation on the training
set as we are merely concerned about the training efficiency
of TVNets. For the training set, only 8 image pairs are
provided with the ground-true optical flow.

Implementation details. The estimation errors are mea-
sured via the average End-Point Error (EPE) defined by

EPE
.
=

1

N

N∑
i=1

√
(u1,i − ugt1,i)

2 + (u2,i − ugt2,i)
2, (14)

where (u1,i, u2,i) and (ugt1,i, u
gt
2,i) are the predicted and

ground-true flow fields, respectively. For the training of
TVNets, we adopt the EPE (Eq. (14)) as the loss function,
and apply the batch gradient decent method with the learn-
ing rate and max-iteration being 0.05 and 3000, respectively.
Several structures, i.e., TVNet-10, TVNet-30, TVNet-50,

2We also provide additional experimental evaluations on action similari-
ty labeling in the supplementary material.

Image Ground

Truth TV-L1 TVNet-50

Without Training

EPE: 0.40

EPE: 0.38

EPE: 0.34

EPE: 0.55

EPE: 0.79

EPE: 1.26

EPE: 0.46

EPE: 2.63

EPE: 0.20

EPE: 0.23

EPE: 0.21

EPE: 0.20

TVNet-50

With Training

Figure 3. Examples of flow fields from TV-L1 and TVNet-50 esti-
mated on MiddleBurry. With training, TVNet-50 is able to extract
finer details than TV-L1 does.

Table 2. The execution speed of different flow extraction methods.
Only one gpu is used for the evaluations. As no ground-truth
is given on UCF101, we apply the term ρ(u) (Eq.(1)) instead
of End-Point-Error to measure the optical flow error. TVNet-50
achieves the fastest speed among all the methods. Theoretically,
since TVNet-50 has a much smaller number of iterations than TV-
L1 (i.e. 50 v.s. 1250), the speed of TVNet-50 should be more
than 100 times faster than TV-L1. However, due to the different
implementations of TV-L1 and TVNet, the real computational
reduction of TVNet is not so big. As the TVNet-50 is implemented
by Tensorflow, we can easily perform parallel flow extraction with
TVNet-50 by enlarging the batch size of input images (e.g., setting
batch = 10); as such, the FPS will be further improved to 60.

Methods FPS Flow Errors Trainable #Parameters
DIS-Fast 9.23 1.29 No No
Deepflow 0.69 1.33 No No

Flownet2.0 4.53 1.32 Yes 105

TV-L1 6.67 0.86 No No
TVNet-50 12 0.93 Yes 102

Table 3. Classification accuracy of various motion descriptors on
HMDB51 (split 1) and UCF101 (split 1).The top part shows the
results of current best action representation methods; the middle
part reports the accuracies of the four baselines; the bottom part
presents the performance of our models. TVNet-50 achieves the
best results on both datasets.

Methods HMDB51 UCF101
C3D [36] - 82.3%

ActionFlowNet [27] 56.4% 83.9%
TV-L1 56.0% 85.1%

DIS-Fast 40.4% 71.2%
Deepflow 50.4% 82.1%

Flownet2.0 52.3% 80.1%
TVNet-50 (no training) 55.6% 83.5%
TVNet-50 (no flow loss) 56.9% 84.5%

TVNet-50 57.5% 85.5%

TVNet-3-10, TVNet-1-3-10, and their counterparts of TV-L1
are implemented to compare the difference between different
network designs.

Results. We have performed one-to-one comparisons be-
tween TVNets and TV-L1 on MiddleBurry in Table 1. Given
the same architecture, TVNet without training achieves close
performance to TV-L1. This is not surprising since TVNet
and TV-L1 are almost the same except the way of interpola-
tion (bilinear vs. bicubic). To further evaluate the effect of
training u0, we conduct additional experiments and report
the results in Table 1. Clearly, makingu0 trainable in TVNet-
s can indeed reduce the End-Point Error. With training both
u0 and the convolution filters, all TVNets except TVNet-
10 achieve lower errors than TV-L1-5-5-50, even though
the number of iterations in TVNets (not more than 50) are
much smaller than that of TV-L1-5-5-50 (up to 1250). Fig-
ure 3 displays the visualization of the optical flow between
TV-L1-5-5-50 and TVNet-50. Another interesting observa-
tion is from the comparison between TVNet-30, TVNet-50,
TVNet-3-10 and TVNet-1-3-10. It is observed TVNet-30
and TVNet-50 finally outperform TVNet-3-10 and TVNet-
1-3-10 after training, implying that the flat structure (i.e.
Nscales = Nwarps = 1) is somehow easier to train. For the
remaining experiments below, we will only compare the per-
formance between TVNet-50 and TV-L1-5-5-50, and denote
TV-L1-5-5-50 as TV-L1 for similarity.

5.2. Action recognition

Dataset. Our experiments are conducted on two popular
action recognition datasets, namely the UCF101 [34] and
the HMDB51 [24] datasets. The UCF101 dataset contains
13320 videos of 101 action classes. The HMDB51 dataset
consists of 6766 videos from 51 action categories.

Implementation details. As discussed before, our
TVNets can be concatenated by a classification network to
formulate an end-to-end model to perform action recognition.
We apply the BN-Inception network [40] as the classifica-
tion model in our experiments due to its effectiveness. The
BN-Inception network is pretrained by the cross-modality
skill introduced in [39] for initialization.

We sample a stack of 6 consecutive images from each
video and extract 5 flow frames for every consecutive pair.
The resulting stack of optical flows are fed to the BN-
Inception network for prediction. To train the end-to-end
model, we set the mini-batch size of the sampled stacks to
128 and the momentum to 0.9. The learning rate was initial-
ized to 0.005. The maximum number of learning iterations
for the UCF101 and the HMDB51 datasets was chosen as
18000 and 7000, respectively. We decreased the learning
rates by a factor of 10 after the 10000th and 16000th iter-
ations for the UCF101 experiment, and after 4000th and
6000th iterations for the HMDB51 case. We only implement
TVNet-50 in this experiment. To prevent overfitting, we also
carry out the corner cropping and scale jittering [40]; the
learning rate for TVNets is further divided by 255.

For the testing, stacks of flow fields are extracted from the

Table 4. Mean classification accuracy of the state-of-the-arts on
HMDB51 and UCF101.

Method HMDB51 UCF101
ST-ResNet [9] 66.4% 93.4%

ST-ResNet + IDT [9] 70.3% 94.6%
TSN [40] 68.5% 94.0%

KVMF [44] 63.3% 93.1%
TDD [38] 65.9% 91.5%

C3D (3 nets) [36] - 90.4%
Two-Stream Fusion [10] 65.4% 92.5%

Two-Stream (VGG16) [3] 58.5% 91.4%
Two-Stream+LSTM [28] - 88.6%
Two-Stream Model [33] 59.4% 88.0%

Ours 71.0% 94.5%
Ours + IDT 72.6% 95.4%

center and four corners of a video. We sample 25 stacks from
each location (i.e., center and corners), followed by flipping
them horizontally to enlarge the testing samples. All the
sampled snippets (250 in total) are fed to BN-Inception [40]
and their outputs are averaged for prediction.

Baselines. Beside the TV-L1 method, we carry out oth-
er three widely-used flow extraction baselines including
DIS-Fast [23], DeepFlow [41] and FlowNet2.0 [18]. For
FlowNet2.0, we use the pretrained model by the KITTI
dataset. For all baselines, we compute the optical flow be-
forehand and store the flow fields as JPEG images by linear
compression. All methods share the same training setting
and classification network for fair comparison.

Computational efficiency comparisons. We have
added thorough computational comparison between TVNet,
TV-L1, DIS-Fast, Deepflow, and Flownet2.0 in Table 2.
To do so, we randomly choose one testing video from the
UCF101 dataset, and compute the optical flow for every
two consecutive frames. The average running time (exclud-
ing I/O times) for TVNet-50, TV-L1, DIS-Fast, DeepFlow
and FlowNet2.0 are summarized in Table 2. The results
verify the advantages of TVNets regarding high number of
Frames-per-Second (FPS), low optical flow error, end-to-end
trainable property, and small number of model parameters.
Flownet2.0 performs more accurately than TV-L1 on the
optical flow datasets (e.g. MiddleBurry) as reported by [18].
However, for the action datasets, TV-L1 and our TVNet ob-
tain lower flow error than Flownet2.0 according to Table 2.

Classification accuracy comparisons. Table 3 presents
action recognition accuracies of TVNet-50 compared with
the four baselines and current best action representation
methods. Clearly, TVNet-50 outperforms all compared meth-
ods on both datasets. Compared to TV-L1, the improvement
of TVNet-50 on UCF101 is not big; however, our TVNet-
50 is computationally advantageous over TV-L1 because it
only employs one scale and one warp, while TV-L1 adopts
five scales and five warps. Even when we freeze its param-
eters, TVNet-50 still achieves better results than DIS-Fast,
DeepFlow and FlowNet2.0; as our TVNet is initialized as a
special TV-L1, the initial structure is sufficient to perform

Video

Frame TV-L1 TVNet

Without Training
TVNet

With Training
Video

Frame TV-L1 TVNet

Without Training
TVNet

With Training

Figure 4. Illustrations of the motion patterns obtained by TV-L1 and TVNet-50 on the UCF101 dataset. From the first to the last column,
we display the image-pair (first image only), the motion features by TV-L1, TVNet-50 without training and with training, respectively.
Interestingly, with training, TVNet-50 generates more abstractive motion features than TV-L1 and its non-trained version. These features not
only automatically remove the movement of the background (see the “punch” example), but also capture the outline of the moving objects.

promisingly. The TVNet is trained with the multi-task loss
given by Eq. (13). To verify the effect of the flow loss term,
i.e. Lf , we train a new model only with the classification
loss. Table 3 shows that such setting decreases the accuracy.

Flownet2.0 can also be jointly finetuned for action classi-
fication. This is done in ActionFlowNet [27] but the results,
as incorporated in Table 3, are worse than ours. This is
probably because TVNet has much fewer parameters than
Flownet2.0, making the training more efficient and less prone
to overfitting. For the UCF101 dataset, the TVNet outper-
forms C3D [36] by more than 2%. The C3D method ap-
plied 3-dimensional convolutions to learn spatiotemporal
features. In contrast to this implicit modeling, in our model,
the motion pattern is extracted by TVNet explicitly. We also
visualize the outputs by TV-L1 and TVNets in Figure 4.

Comparison with other state-of-the-arts. To compare
with state-of-the-art methods, we apply several practical
tricks to our TVNet-50, as suggested by previous works [33,
40]. First, we perform the two-stream combination trick [33]
by additionally training a spatial network on RGB images.
We use the BN-Inception network as the spatial network and
apply the same experimental setting as those in [40] for the
training. At testing, we combine the predictions of the spatial
and temporal networks with a fixed weight (i.e., 1:2). Second,
to take the long-term temporal awareness into account, we
perform the temporal pooling of 3 sampled segments for
each video during training as suggested by [40].

Table 4 summarizes the classification accuracy of TVNets
compared with the state-of-the-art approaches over all three
splits of the UCF101 and the HMDB51 dataset. The improve-
ments achieved by TVNets are quite substantial compared to
the original two-stream method [33] (6.5% on UCF101 and
11.6% on HMDB51). Such significant gains are achieved as
a result of employing better models (i.e., BN-Inception net)

and also considering end-to-end motion mining.
The TSN method [40] is actually a two-stream model with

TV-L1 inputs. TSN shares the same classification network
and experimental setups as our TVNets. As shown in Table 3,
our TVNets outperform TSN on both action datasets (e.g.
71.6% vs. 68.5% on HMDB51), verifying the effectiveness
of TVNets for the two-stream models.

Combining CNN models with trajectory-based hand-
crafted IDT features [37] can improve the final performances
[38, 36, 5, 9]. Hence, we averaged the L2-normalized SVM
scores of FV-encoded IDT features (i.e., HOG, HOF and
MBH) with the L2-normalized video predictions (before the
loss layer) of our methods. Table 4 summarizes the results
and indicates that there is still room for improvement. Our
95.4% on the UCF101 and 72.6% on the HMDB51 remark-
ably outperform all the compared methods.

A recent state-of-the-art result is obtained by I3D [6],
achieving 97.9% on UCF101 and 80.2% on HMDB51. How-
ever, the I3D method improves the performance by using
a large amount of additional training data. It is unfair to
compare their results with ours.

6. Conclusion

In this paper, we propose a novel end-to-end motion repre-
sentation learning framework, named as TVNet. Particularly,
we formulate the TV-L1 approach as a neural network, which
takes as input stacked frames and outputs optical-flow-like
motion features. Experimental results on two video under-
standing tasks demonstrate its superior performances over
the existing motion representation learning approaches. In
the future, we will explore more large-scale video under-
standing tasks to examine the benefits of the end-to-end
motion learning method.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. C-

itro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Ten-
sorflow: Large-scale machine learning on heterogeneous dis-
tributed systems. arXiv preprint arXiv:1603.04467, 2016.
6

[2] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and
R. Szeliski. A database and evaluation methodology for opti-
cal flow. International Journal of Computer Vision, 92(1):1–
31, 2011. 6

[3] N. Ballas, L. Yao, C. Pal, and A. Courville. Delving deeper
into convolutional networks for learning video representations.
arXiv preprint arXiv:1511.06432, 2015. 7

[4] Y. Bian, C. Gan, X. Liu, F. Li, X. Long, Y. Li, H. Qi, J. Zhou,
S. Wen, and Y. Lin. Revisiting the effectiveness of off-the-
shelf temporal modeling approaches for large-scale video
classification. arXiv preprint arXiv:1708.03805, 2017. 2

[5] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould.
Dynamic image networks for action recognition. In Proc. Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 3034–3042, 2016. 8

[6] J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4724–4733. IEEE, 2017. 2, 8

[7] M.-y. Chen and A. Hauptmann. Mosift: Recognizing human
actions in surveillance videos. 2009. 2

[8] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,
V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.
Flownet: Learning optical flow with convolutional network-
s. In Proceedings of the IEEE International Conference on
Computer Vision, pages 2758–2766, 2015. 2

[9] C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal
residual networks for video action recognition. In Proc. Ad-
vances in Neural Information Processing Systems (NIPS),
pages 3468–3476, 2016. 1, 2, 7, 8

[10] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional
two-stream network fusion for video action recognition. In
Proc. Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1933–1941, 2016. 1, 2, 7

[11] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş,
V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.
Flownet: Learning optical flow with convolutional networks.
ICCV, 2015. 2, 5

[12] C. Gan, C. Sun, L. Duan, and B. Gong. Webly-supervised
video recognition by mutually voting for relevant web images
and web video frames. In ECCV, pages 849–866, 2016. 2

[13] C. Gan, N. Wang, Y. Yang, D.-Y. Yeung, and A. G. Haupt-
mann. Devnet: A deep event network for multimedia event
detection and evidence recounting. In CVPR, 2015. 2

[14] C. Gan, T. Yao, K. Yang, Y. Yang, and T. Mei. You lead, we
exceed: Labor-free video concept learning by jointly exploit-
ing web videos and images. CVPR, 2016. 2

[15] G. Gkioxari and J. Malik. Finding action tubes. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 759–768, 2015. 1

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778,
2016. 1

[17] S. Herath, M. Harandi, and F. Porikli. Going deeper into
action recognition: A survey. Image and Vision Computing
(IVC), pages –, 2017. 2

[18] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox. Flownet 2.0: Evolution of optical flow estimation
with deep networks. arXiv preprint arXiv:1612.01925, 2016.
2, 7

[19] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial
transformer networks. In Advances in Neural Information
Processing Systems, pages 2017–2025, 2015. 5

[20] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural
networks for human action recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(1):221–231,
Jan 2013. 2

[21] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In Proc. Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1725–1732,
June 2014. 2

[22] A. Klaser, M. Marszałek, and C. Schmid. A spatio-temporal
descriptor based on 3d-gradients. In BMVC, pages 275–1,
2008. 2

[23] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool. Fast optical
flow using dense inverse search. In European Conference on
Computer Vision, pages 471–488. Springer, 2016. 7

[24] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.
Hmdb: a large video database for human motion recognition.
In Proc. Int. Conference on Computer Vision (ICCV), pages
2556–2563. IEEE, 2011. 2, 7

[25] I. Laptev. On space-time interest points. International journal
of computer vision, 64(2-3):107–123, 2005. 2

[26] X. Long, C. Gan, G. de Melo, J. Wu, X. Liu, and S. Wen.
Attention clusters: Purely attention based local feature inte-
gration for video classification. CVPR, 2018. 2

[27] J. Y.-H. Ng, J. Choi, J. Neumann, and L. S. Davis. Action-
flownet: Learning motion representation for action recogni-
tion. arXiv preprint arXiv:1612.03052, 2016. 2, 6, 8

[28] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici. Beyond short snippets: Deep
networks for video classification. In Proc. Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4694–4702, June 2015. 1, 2, 7

[29] X. Peng and C. Schmid. Multi-region two-stream r-cnn for ac-
tion detection. In European Conference on Computer Vision,
pages 744–759. Springer, 2016. 1

[30] Z. Qiu, T. Yao, and T. Mei. Learning spatio-temporal rep-
resentation with pseudo-3d residual networks. In IEEE In-
ternational Conference on Computer Vision (ICCV), pages
5534–5542. IEEE, 2017. 2

[31] A. Ranjan and M. J. Black. Optical flow estimation using a
spatial pyramid network. arXiv preprint arXiv:1611.00850,
2016. 2

[32] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages
91–99, 2015. 1

[33] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In Proc. Advances
in Neural Information Processing Systems (NIPS), pages 568–
576, 2014. 1, 2, 7, 8

[34] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset
of 101 human actions classes from videos in the wild. arXiv
preprint arXiv:1212.0402, 2012. 2, 7

[35] D. Teney and M. Hebert. Learning to extract motion from
videos in convolutional neural networks. In Asian Conference
on Computer Vision, pages 412–428. Springer, 2016. 2

[36] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3d convolutional net-
works. In Proc. Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4489–4497, 2015. 1, 2, 6, 7, 8

[37] H. Wang and C. Schmid. Action recognition with improved
trajectories. In Proc. Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3551–3558, 2013. 2, 8

[38] L. Wang, Y. Qiao, and X. Tang. Action recognition with
trajectory-pooled deep-convolutional descriptors. In Proc.
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4305–4314, 2015. 7, 8

[39] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards good
practices for very deep two-stream convnets. arXiv preprint
arXiv:1507.02159, 2015. 7

[40] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. Van Gool. Temporal segment networks: towards good
practices for deep action recognition. In Proc. European Con-
ference on Computer Vision (ECCV), pages 20–36. Springer,
2016. 1, 2, 5, 7, 8

[41] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.
Deepflow: Large displacement optical flow with deep match-
ing. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1385–1392, 2013. 7

[42] C. Zach, T. Pock, and H. Bischof. A duality based approach
for realtime tv-l 1 optical flow. Pattern Recognition, pages
214–223, 2007. 1, 2, 3

[43] B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang. Real-
time action recognition with enhanced motion vector cnns. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2718–2726. IEEE, 2016. 2

[44] W. Zhu, J. Hu, G. Sun, X. Cao, and Y. Qiao. A key volume
mining deep framework for action recognition. In Proc. Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 1991–1999. IEEE, 2016. 7

[45] Y. Zhu, Z. Lan, S. Newsam, and A. G. Hauptmann. Hidden
two-stream convolutional networks for action recognition.
arXiv preprint arXiv:1704.00389, 2017. 2

