Geodesic Flow Kernel for Unsupervised Domain Adaptation

Boqing Gong

University of Southern California

Joint work with Yuan Shi, Fei Sha, and Kristen Grauman

Motivation

Mismatch between different domains/datasets

- Object recognition
 - Ex. [Torralba & Efros'11, Perronnin et al.'10]
- Video analysis
 - Ex. [Duan et al.'09, 10]
- Pedestrian detection
 - Ex. [Dollár et al.'09]
- Other vision tasks

Unsupervised domain adaptation

• Source domain (labeled)

$$D_{S} = \{(x_{i}, y_{i}), i = 1, 2, \dots, N\} \land P_{S}(X, Y)$$

• Target domain (unlabeled)

$$D_T = \{(x_i, ?), i = 1, 2, \dots, M\} \land P_T(X, Y)$$

The two distributions are **not** the same!

Objective

Train classification model to work well on the target

Challenges

 How to optimally, w.r.t. target domain, define discriminative loss function select model, tune parameters

• How to solve this ill-posed problem? impose additional structure

Examples of existing approaches

Correcting sample bias

- Ex. [Shimodaira'00, Huang et al.'06, Bickel et al.'07]
- Assumption: marginal distributions are the only difference.

Learning transductively

- Ex. [Bergamo & Torresani'10, Bruzzone & Marconcini'10]
- Assumption: classifiers have high-confidence predictions across domains.
- Learning a shared representation
 - Ex. [Daumé III'07, Pan et al.'09, Gopalan et al.'11]
 - Assumption: a latent feature space exists in which classification hypotheses fit both domains.

Our approach: learning a shared representation

Key insight: bridging the gap

- Fantasize infinite number of domains
- Integrate out analytically idiosyncrasies in domains
- Learn invariant features by constructing kernel

Main idea: geodesic flow kernel

- 1. Model data with linear subspaces
- 2. Model domain shift with geodesic flow
- 3. Derive domain-invariant features with kernel
- 4. Classify target data with the new features

Modeling data with linear subspaces

Assume low-dimensional structure

Ex. PCA, Partial Least Squares (source only)

Characterizing domains geometrically

Grassmann manifold G(d,D)

- Collection of *d*-dimensional subspaces of a vector space \mathbf{R}^D (*d* < *D*)
- Each point corresponds to a subspace

Modeling domain shift with geodesic flow

Geodesic flow on the manifold

- starting at source & arriving at target in unit time
- flow parameterized with one parameter
- closed-form, easy to compute with SVD

Modeling domain shift with geodesic flow

Modeling domain shift with geodesic flow

Along this flow,

points (subspaces) represent intermediate domains.

Domain-invariant features

More similar to source.

Domain-invariant features

More similar to target.

Domain-invariant features

Blend the two.

Measuring feature similarities with inner products

$$z_{i}^{\infty} = \begin{bmatrix} \Phi(0)^{T} x_{i}, \cdots \\ \Phi(0)^{T} x_{i}, \cdots \\ \Phi(0)^{T} x_{j}, \cdots \\ \Phi(t)^{T} x_{j}, \cdots \\ \Phi(t)^{T} x_{j}, \cdots \\ \Phi(1)^{T} x_{j} \end{bmatrix}$$

More similar to source.
More similar to target.

 $\langle z_i^{\infty}, z_j^{\infty} \rangle$: Invariant to either source or target.

Learning domain-invariant features with kernels

We define the geodesic flow kernel (GFK):

$$\langle z_i^{\infty}, z_j^{\infty} \rangle = \int_0^1 (\Phi(t)^T x_i)^T (\Phi(t)^T x_j) dt = x_i^T G x_j$$

- Advantages
 - Analytically computable
 - Robust to variants towards either source or target
 - Broadly applicable: can kernelize many classifiers

Contrast to discretely sampling

GFK (ours)

$$\langle z_i^{\infty}, z_j^{\infty} \rangle =$$
$$\int_0^1 (\Phi(t)^T x_i)^T (\Phi(t)^T x_j) dt = x_i^T G x_j$$

No free parameters

[Gopalan et al. ICCV 2011]

Dimensionality reduction

Number of subspaces, dimensionality of subspace, dimensionality after reduction

GFK is conceptually cleaner and computationally more tractable.

$$H^{\infty} \langle z_i^{\infty}, z_j^{\infty} \rangle = x_i G x_j$$

Experimental setup

- Four domains
- Features
 Bag-of-SURF
- Classifier: 1NN
- Average over 20 random trials

Webcam

Classification accuracy on target

Classification accuracy on target

Classification accuracy on target

Which domain should be used as the source?

DSLR

Caltech-256

Webcam

Amazon

Automatically selecting the best

We introduce the **Rank of Domains** measure:

$$\mathcal{R}(\mathcal{S}, \mathcal{T}) = \frac{1}{\mathsf{d}^*} \sum_{i}^{\mathsf{d}^*} \theta_i \left[KL(\mathcal{S}_i \| \mathcal{T}_i) + KL(\mathcal{T}_i \| \mathcal{S}_i) \right]$$

Intuition

- Geometrically, how subspaces disagree
- Statistically, how distributions disagree

Automatically selecting the best

Caltech-256 adapts the best to Amazon.

Semi-supervised domain adaptation

Label three instances per category in the target

Analyzing datasets in light of domain adaptation

Cross-dataset generalization [Torralba & Efros'11]

Analyzing datasets in light of domain adaptation

Cross-dataset generalization [Torralba & Efros'11]

Caltech-101 generalizes the worst. Performance drop of ImageNet is big.

Analyzing datasets in light of domain adaptation

Cross-dataset generalization [Torralba & Efros'11]

Caltech-101 generalizes the worst (w/ or w/o adaptation). There is nearly no performance drop of ImageNet.

Summary

- Unsupervised domain adaptation
 - Important in visual recognition
 - Challenge: no labeled data from the target
- Geodesic flow kernel (GFK)
 - Conceptually clean formulation: no free parameter
 - Computationally tractable: closed-form solution
 - Empirically successful: state-of-the-art results
- New insight on vision datasets
 - Cross-dataset generalization with domain adaptation
 - Leveraging existing datasets despite their idiosyncrasies

Future work

Beyond subspaces
 Other techniques to model domain shift

 From GFK to statistical flow kernel Add more statistical properties to the flow

Applications of GFK
 Ex., face recognition, video analysis

Summary

Thank you!

- Unsupervised domain adaptation
 - Important in visual recognition
 - Challenge: no labeled data from the target
- Geodesic flow kernel (GFK)
 - Conceptually clean formulation
 - Computationally tractable
 - Empirically successful
- New insight on vision datasets
 - Cross-dataset generalization with domain adaptation
 - Leveraging existing datasets despite their idiosyncrasies