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Motivation
Mismatch between different 

domains/datasets
– Object recognition 

• Ex. [Torralba & Efros’11, Perronnin et al.’10]

– Video analysis 
• Ex. [Duan et al.’09, 10]

– Pedestrian detection 
• Ex. [Dollár et al.’09]

– Other vision tasks
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Performance 
degrades

significantly!

Images from [Saenko et al.’10].
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Unsupervised domain adaptation

• Source domain (labeled)

• Target domain (unlabeled)

• Objective
Train classification model to work well on the target
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The two distributions 
are not the same!
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Challenges

• How to optimally, w.r.t. target domain,
define discriminative loss function
select model, tune parameters

• How to solve this ill-posed problem?
impose additional structure
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• Correcting sample bias
– Ex. [Shimodaira’00, Huang et al.’06, Bickel et al.’07]

– Assumption: marginal distributions are the only difference.

• Learning transductively
– Ex. [Bergamo & Torresani’10, Bruzzone & Marconcini’10]

– Assumption: classifiers have high-confidence predictions 
across domains.

• Learning a shared representation
– Ex. [Daumé III’07, Pan et al.’09, Gopalan et al.’11]

– Assumption: a latent feature space exists in which 
classification hypotheses fit both domains.

Examples of existing approaches
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Our approach: 
learning a shared representation

Key insight: bridging the gap

– Fantasize infinite number of 
domains

– Integrate out analytically
idiosyncrasies in domains

– Learn invariant features by 
constructing kernel
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Main idea: geodesic flow kernel

1. Model data with linear subspaces
2. Model domain shift with geodesic flow
3. Derive domain-invariant features with kernel
4. Classify target data with the new features
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Assume low-dimensional structure

Ex. PCA, Partial Least Squares (source only)

Modeling data with linear subspaces
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Grassmann manifold
– Collection of d-dimensional subspaces of a vector 

space 
– Each point corresponds to a subspace

Characterizing domains geometrically
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Target

Source 

Geodesic flow on the manifold
– starting at source & arriving at target in unit time
– flow parameterized with one parameter 
– closed-form, easy to compute with SVD

Modeling domain shift with 
geodesic flow
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Modeling domain shift with 
geodesic flow
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Modeling domain shift with 
geodesic flow
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Along this flow, 
points (subspaces) represent intermediate domains.



Domain-invariant features
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Domain-invariant features
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Domain-invariant features
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Measuring feature similarities with 
inner products
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We define the geodesic flow kernel (GFK):

• Advantages
– Analytically computable

– Robust to variants towards either source or target

– Broadly applicable: can kernelize many classifiers

Learning domain-invariant features 
with kernels
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Contrast to discretely sampling
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GFK (ours) [Gopalan et al. ICCV 2011]

Dimensionality 
reduction

No free parameters
Number of subspaces, 
dimensionality of subspace, 
dimensionality after reduction

GFK is conceptually cleaner and 
computationally more tractable.



Recap of key steps
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Experimental setup

• Four domains

• Features
Bag-of-SURF

• Classifier: 1NN

• Average over 20 
random trials
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No adaptation [Gopalan et al.'11] GFK (ours)

Classification accuracy on target
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Which domain should be used as 
the source?
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We introduce the Rank of Domains measure:

Intuition
– Geometrically, how subspaces disagree
– Statistically, how distributions disagree
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Automatically selecting the best
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Possible 
sources

Our 
ROD

measure
Caltech-256 0.003
Amazon 0
DSLR 0.26
Webcam 0.05

Caltech-256 adapts the best to Amazon.
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Semi-supervised domain adaptation

Label three instances per category in the target
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Cross-dataset generalization [Torralba & Efros’11]
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Cross-dataset generalization [Torralba & Efros’11]
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Caltech-101 generalizes the worst.
Performance drop of ImageNet is big.

Analyzing datasets in light of 
domain adaptation

Performance 
drop!



Cross-dataset generalization [Torralba & Efros’11]
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drop becomes 
smaller!

Caltech-101 generalizes the worst (w/ or w/o adaptation).
There is nearly no performance drop of ImageNet.

Analyzing datasets in light of 
domain adaptation



Summary

• Unsupervised domain adaptation
– Important in visual recognition
– Challenge: no labeled data from the target

• Geodesic flow kernel (GFK)
– Conceptually clean formulation: no free parameter
– Computationally tractable: closed-form solution
– Empirically successful: state-of-the-art results

• New insight on vision datasets
– Cross-dataset generalization with domain adaptation
– Leveraging existing datasets despite their idiosyncrasies
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Future work

• Beyond subspaces
Other techniques to model domain shift

• From GFK to statistical flow kernel
Add more statistical properties to the flow

• Applications of GFK 
Ex., face recognition, video analysis
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Summary
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• Unsupervised domain adaptation
– Important in visual recognition
– Challenge: no labeled data from the target

• Geodesic flow kernel (GFK)
– Conceptually clean formulation
– Computationally tractable
– Empirically successful

• New insight on vision datasets
– Cross-dataset generalization with domain adaptation
– Leveraging existing datasets despite their idiosyncrasies


