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Abstract

Recent studies have shown that recognition datasets are biased. Paying no heed
to those biases, learning algorithms often result in classifiers with poor cross-
dataset generalization. We are developing domain adaptation techniques to over-
come those biases and yield classifiers with significantly improved performance
when generalized to new testing datasets. Our work enables us to continue to har-
vest the benefits of existing vision datasets for the time being. Moreover, it also
sheds insights about how to construct new ones. In particular, domain adaptation
raises the bar for collecting data — the most informative data are those which
cannot be classified well by learning algorithms that adapt from existing datasets.

1 Introduction

Datasets are of paramount importance to visual recognition research. We use them extensively to
train and evaluate learning algorithms and features, in the hope that they provide objective guidance
for constructing robust classifiers.

This notion can no longer be taken for granted. Several recent studies have shown that instead of
being objective, datasets are often biased—even when they appear to be neutrally composed of im-
ages from the same visual categories. The biases can be attributed to many exogenous factors in data
collection, such as cameras, preferences over certain types of backgrounds, or annotator tendencies.
Dataset biases adversely affect cross-dataset generalization; that is, the performance of a classifier
trained on one dataset drops significantly when applied to another one [1, 2, 3]. Thus, instead of
building classifiers that discriminate visual categories irrespective of dataset origins, our learning
algorithms overfit on the datasets’ idiosyncrasies and yield dataset-specific visual classifiers!

Given those discouraging results, it is only natural to doubt the value of biased datasets. In particular,
should we trust and continue to utilize existing datasets? Our answer is a relieving and positive yes.
Our goal is to overcome the biases so that existing datasets can still be instructive as training data in
building robust classifiers with good generalization properties.

To this end, we develop powerful learning algorithms to reduce the idiosyncrasies in the training
datasets. Concretely, we model the effect of biases as causing mismatches in datasets’ distributions,
and cast the problem as one of rectifying the mismatch between domains [4, 5, 6, 7, 8, 9, 10, 11,
12, 13]. Our key idea is to identify domain invariant features such that the training dataset (i.e., the
source domain) and the testing dataset (i.e., the target domain) will be similar to each other. With
such features, classifiers trained on the training dataset will also perform well on the target domain.

In this paper, we describe two different but closely related domain adaptation approaches exploring
that idea. We will first describe our previous work of learning invariant features via the geodesic flow
kernel (GFK) [14]. This method represents domains with low-dimensional subspaces and identifies
different domains as points on a Grassmann manifold. It then models changes between domains as
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geodesic paths between the points. Intuitively, the path encodes incremental changes in geometric
and statistical properties for one domain “morphing” into the other. GFK then computes features that
are insensitive to those changes, facilitating the adaptation between the source and target domains.

Our second approach advances the core idea behind GFK further. Instead of relying on a single ker-
nel, we construct multiple kernels. Specifically, for the original pair of domains, we create multiple
auxiliary pairs of domains. Adaptation between those auxiliary pairs is easier than in the original
pair, as we construct them explicitly to have reduced distributional mismatch. The GFKs for those
auxiliary pairs thus inform how to construct features for the adaptation task on the original pair.
Specifically, we learn to combine their induced features discriminatively such that the final features
are optimized on the original target domain.

Our approaches are advantageous both in terms of the visual recognition application and unsuper-
vised domain adaptation in general. We do not assume labeled examples in the target domain (though
our approaches can be extended easily to use them). The algorithms are virtually free of parameter-
tuning, reducing the need for cross-validation and associated computation costs. Computing the
proposed kernels is also scalable to very large datasets, requiring only matrix eigendecompositions.
Our methods achieve the state-of-the-art performance for unsupervised domain adaptation, and they
are sometimes even superior to methods that require labeled examples in the target domain.

2 Proposed Approaches for Unsupervised Domain Adaptation
Intuitively, datasets are biased because features encode information not only intrinsic to visual cat-
egories but also relevant to dataset-specific exogenous factors. Due to those factors, features are
distributed differently across datasets. Correspondingly, classifiers optimized under one distribution
will generalize poorly in other different distributions. Correcting the distribution mismatch is known
as domain adaptation in the literature of statistics and machine learning [4, 5, 6, 7].

Thus, we cast overcoming dataset biases as an instance of domain adaptation, where one dataset is
the source domain and the other is the target domain [8, 9, 10, 11, 12, 13]. For example, the source
domain could be a benchmark dataset from the recognition community, while the target domain
could consist of novel images taken on a mobile phone application. We focus on unsupervised
domain adaptation where the target domain does not provide labels. The key challenge is then to
extract domain-invariant features so as to reduce the mismatch between the two domains.

We have developed two approaches to address this challenge. The core idea is to derive kernels
(which implicitly define feature mappings) with desirable properties. We start by describing our
previous work of the geodesic flow kernel (GFK) [14]. We then describe how to improve the perfor-
mance of GFK-based domain adaptation using discriminative training of multiple kernels.

2.1 Geodesic flow kernel (GFK)

The GFK technique models each domain with a d-dimensional linear subspace and embeds them
onto a Grassmann manifold. Specifically, let PS ,PT ∈ RD×d denote the basis of the PCA subspaces
for each of the two domains, respectively. The Grassmann manifold G(d,D) is the collection of all
d-dimensional subspaces of the feature vector space RD.

The geodesic flow {Φ(t) : t ∈ [0, 1]} between PS and PT on the manifold parameterizes a path
connecting the two subspaces. Every point on the flow is a basis of a d-dimensional subspace. In the
beginning of the flow, the subspace is similar to PS = Φ(0) and in the end of the flow, the subspace
is similar to PT = Φ(1). Thus, the flow can be seen as a collection of infinitely many subspaces
varying gradually from the source to the target domain. The original feature x is projected into these
subspaces and forms a feature vector of infinite dimensions: z∞ = {Φ(t)Tx : t ∈ [0, 1]}.

Using the new feature representation for learning will force the classifiers to be less sensitive to
domain differences and to use domain-invariant features. In particular, the inner products of the new
features give rise to a positive semidefinite kernel defined on the original features:

G(xi,xj) = ⟨z∞
i , z∞

j ⟩ = xT
i

∫ 1

0

Φ(t)Φ(t)T dt xj = xT
iGxj . (1)

The matrix G can be computed efficiently using singular value decomposition on P T
SPT . Moreover,

computing the kernel does not require any labeled data. The only free parameter is the dimension-
ality d of the subspace, which we show how to infer automatically. Details are in [14].
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MUG from WEBCAM Landmarks from AMAZON at scale σ = 26σ0

Landmarks from AMAZON at scale σ = 23σ0 Landmarks from AMAZON at scale σ = 20σ0

Landmarks from AMAZON at scale σ = 2−3σ0 Examples of non-landmarks

Figure 1: Landmarks selected from the source domain AMAZON for the target WEBCAM, as well as
non-landmarks. As the scale decreases, images with greater variance in appearance are selected.

Our previous study has demonstrated the significant advantage of geodesic flow kernels over other
competing methods; section 3 gives a snapshot of those empirical results. In what follows, we
describe a new approach to advance the core idea behind GFK further.

2.2 Discriminative learning of multiple cross-domain kernels

The strength of the GFK — requiring no labeled data from the target domain — can sometimes also
be perceived as its shortcoming. It is not clear from the construction of the GFK whether the learned
domain-invariant features aim directly to minimize classification error on the target domain. Yet,
how can we learn discriminative domain-invariant features for unsupervised domain adaptation?

Our first insight to answer this seemingly oxymoronic question is that in the source domain, there
are data points we call landmarks that are distributed in such a way that they look like they could be
sampled from the target domain. Fig. 1 displays several discovered landmark images for the datasets
we use in this work. Our intuition is to discriminatively optimize the performance of the adapted
classifiers on these labeled landmarks as a proxy to the true errors on the target domain.

Our second insight is to exploit those landmarks further but without their labels to construct multiple
auxiliary domain adaptation tasks. Those auxiliary tasks are easier to solve as we purposely use the
landmarks to bridge the source and the target domains in those tasks. Each one of those tasks gives
rise to a GFK kernel that implies a domain-invariant feature mapping. We then discriminatively
combine those mappings in the framework of multiple kernel learning.

In the following, we summarize several key steps, with details to appear in a longer version.

Identifying landmarks We use a variant of maximum mean discrepancy (MMD) [15] to se-
lect samples from the source domain to match the distribution of the target domain. Let DS =
{(xm, ym)}Mm=1 denote M data points and their labels from the source domain and likewise
DT = {xn}Nn=1 for the target domain. We use α = {αm ∈ {0, 1}} to denote M indicator variables,
one for each data point in the source domain. If αm = 1, then xm is regarded as a landmark. We
identify αm by minimizing the MMD metric, defined with a kernel mapping function ϕ(x),

min
α

∥∥∥∥∥ 1∑
m αm

∑
m

αmϕ(xm)− 1

N

∑
n

ϕ(xn)

∥∥∥∥∥
2

H

s.t.
1∑

m αm

∑
m

αmymc =
1

M

∑
m

ymc, (2)

where ymc denotes the indicator variable for ym = c. Note that the right-hand-side of the constraint
is simply the prior probability of the class c, estimated from the source domain. The constraint
is used to avoid the case that some categories dominate the selected landmarks. We solve the in-
tractable eq. (2) with linear relaxation; details are omitted for brevity.

We use the geodesic flow kernel computed between the source DS and the target DT , as defined in
eq. (1), to compose the kernel mapping function ϕ(x)

ϕ(xi)
Tϕ(xj) = K(xi,xj) = exp{−d2G(xi,xj)/σ

2} = exp{−(xi − xj)
TG(xi − xj)/σ

2}. (3)

Constructing auxiliary tasks The bandwidth σ in the kernel eq. (3) is a scaling factor for measur-
ing similarities at different granularities. We use a set of factors {σq ∈ [σmin, σmax]}Qq=1. For each
σq , we solve eq. (2) to obtain the corresponding landmarks Lq whose αm is 1.
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Table 1: Comparison of our newly proposed approach (MKL) to the baseline and existing methods
for unsupervised domain adaptation. MKL performs the best on 8 out of 9 pairs, while our previous
approach (GFK) [14] is the second best. C: CALTECH, A: AMAZON, W: WEBCAM, D: DSLR.

A→C A→D A→W C→A C→D C→W W→A W→C W→D
SRC ONLY 26.0 25.5 29.8 23.7 25.5 25.8 23.0 19.9 59.2
GFS [13] 39.2 36.3 33.6 43.6 40.8 36.3 33.5 30.9 75.7
TCA [7] 35.0 36.3 27.8 41.4 45.2 32.5 24.2 22.5 80.2

GFK [14] (ours) 42.2 42.7 40.7 44.5 43.3 44.7 31.8 30.8 75.6
GFK+MKL (ours) 45.5 47.1 46.1 56.7 57.3 49.5 40.2 35.4 75.2

For each set of landmarks, we construct a new domain pair by moving the landmarks from the
original source to the target domains, yielding the source domain DS \ Lq and the target domain
DT

∪
Lq . Arguably, each auxiliary task is “easier” to adapt than the original pair DS and DT , due

to the increased distributional match between the new source and target domains.

Discriminative multiple kernel learning We learn the final kernel as a convex combination of all
the kernels from the auxiliary tasks: F =

∑
q wqGq , where Gq is the GFK for the q-th auxiliary

task. The coefficients wq are optimized on a labeled training set DTRAIN =
∑

q Lq , composed of
all landmarks selected at different granularities. We use F in a support vector machine classifier
whose accuracy is optimized with the standard multiple kernel learning algorithm to learn wq [16].
Intuitively, since landmarks are distributed similarly to the target, we expect the classification error
on DTRAIN to be a good proxy to that of the target.

3 Experimental Results

We evaluate the proposed methods on benchmark datasets extensively used in domain adaptation
for object recognition [13, 11, 12]. We use four datasets: CALTECH [17], AMAZON, WEBCAM, and
DSLR [11]. Each dataset is distinctly biased: objects in the CALTECH are mostly centered with clean
backgrounds; AMAZON is collected from online catalogs, WEBCAM and DSLR were taken in office
environments with different resolutions. We follow the same procedure in [11] to prepare our data.

Table 1 reports the adapted classifiers’ accuracies on the target domains under 9 adaptation tasks. We
contrast our methods (geodesic flow kernel (GFK) [14] and landmark-based multiple kernel learning
(MKL)), to a baseline where there is no adaptation (SRC ONLY), as well as two leading methods for
domain adaptation: geodesic flow sampling (GFS) [13] and transfer component analysis (TCA) [7].

In most cases, domain adaptation techniques improve over classifiers without being adapted. The
best performing method is MKL, outperforming all others in 8 out of 9 pairs. Our previous ap-
proach GFK is the second best performing method. More results and details can be found at
http://rainflower.usc.edu/projects/domainadaptation.

4 Conclusion

Despite the extensive effort in collecting data in both volume and diversity, dataset biases will remain
as a challenging problem in computer vision for a long period of time, due to the combinatorial
explosion of too many exogenous factors. Moreover, in many practical applications, we may want
the classifiers to perform well on a specific target distribution, instead of on all possible distributions.

We have developed unsupervised domain adaptation techniques to overcome the biases. We show
the empirical success of the proposed methods. We believe that this will be a fruitful direction for
future research, complementing the effort of building large-scale unbiased datasets. In particular, our
work raises the bar for collecting data—we should scrutinize and aim only for data which cannot
be classified well by learning algorithms that adapt from existing datasets, as those data will be the
most informative addition.
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