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Abstract

In this paper, we present a novel robust zero-
sum game framework for pool-based active
learning grounded on advanced statistical
learning theory. Pool-based active learning
usually consists of two components, namely,
learning of a classifier given labeled data and
querying of unlabeled data for labeling. Most
previous studies on active learning consider
these as two separate tasks and propose var-
ious heuristics for selecting important unla-
beled data for labeling, which may render the
selection of unlabeled examples sub-optimal
for minimizing the classification error. In con-
trast, the presented work formulates active
learning as a unified optimization framework
for learning the classifier, i.e., the querying
of labels and the learning of models are uni-
fied to minimize a common objective for sta-
tistical learning. In addition, the proposed
method avoids the issues of many previous
algorithms such as inefficiency, sampling bias,
and sensitivity to imbalanced data distribu-
tion. Besides theoretical analysis, we conduct
extensive experiments on benchmark datasets
and demonstrate the superior performance of
the proposed active learning method over the
state-of-the-art methods.

1 Introduction

A classical learning paradigm is assuming that we
are given a set of labeled training examples, which
is referred to as passive learning. However, in many
applications such as natural language processing [1],
medical image classification [2], biomedicine and bioin-
formatics [3], the labeled data are expensive to obtain.
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Instead, there could be a plenty of unlabeled data avail-
able. Active learning addresses the challenge by only
querying the labels of a small number of unlabeled
data for learning a prediction model. Active learning
strategy can be also extended to linear regression [4],
outlier detection [5], ensembles [6, 7]. This paper fo-
cuses on pool-based active learning (PAL), where a set
of unlabeled data is given beforehand.

Although there are extensive studies on PAL, almost
all previous methods consist of two alternating steps:
(i) training a prediction model based on labeled data;
and (ii) selecting some unlabeled data for querying
their labels. These two steps are usually alternated for
a number of times until either the budget of querying
unlabeled data is used up or the performance becomes
satisfactory. A common approach for training a pre-
diction model is based on empirical risk minimization
over the labeled data. There are various approaches
proposed for selecting unlabeled data for querying their
labels. These approaches are different in the criterion
in terms of what are the optima set of unlabeled data
for querying their labels. To this end, many heuristic
approaches are proposed, which will be reviewed in
next section.

While research about PAL in the traditional route has
entered into a bottleneck, in this paper we propose
a new framework for PAL, which not only brings a
new perspective regarding the two steps in traditional
active learning but also improves the performance of
start-of-the-art PAL methods. The proposed frame-
work is based on a zero-sum game for training the
model and determining the selection probabilities of
unlabeled data. In particular, updating the model
and selection probabilities can be considered as two
players in a zero-sum game, where the player for up-
dating the model aims to minimize a weighted loss
over individual data and the player for updating the
selection probabilities aims to select the worst weights
in a constrained domain to maximize the weighted loss.
Different from conventional active learning methods,
in the proposed framework the two steps of training
prediction models and selecting unlabeled data are uni-
fied in a single framework, aiming to minimize a robust
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risk for statistical learning.

The proposed robust zero-sum game framework can be
considered as a novel extension to the active learning
setting of an advanced passive learning approach based
on a distributationally robust optimization [8], which
is equivalent to using a variance-based regularization
and achieves an effect of minimizing both the bias
and the variance of the prediction. In addition, our
contributions include how to handle the unlabeled data
for updating the selection probabilities in order to
minimize the robust risk and the convergence analysis of
the proposed method. Moreover, we conduct extensive
experiments on benchmark datasets to demonstrate the
effectiveness of the proposed active learning method.

2 Related Work

Before discussing some related work, we would like
to point out that there are a large volume of studies
related to PAL and our review cannot be exhausted.
we will focus on the core ideas in existing PAL studies
and some representative work.

As mentioned before, most PAL methods alternate be-
tween two steps, i.e., training a classification model
based on labeled (or predicted labeled) data and se-
lecting unlabeled data for querying their labels. The
training of a prediction model is usually accomplished
by minimizing a certain convex surrogate loss averaged
over the labeled (or predicted labeled) data, which
is known as empirical risk minimization. Few stud-
ies also considered using Bayesian learning to learn a
probabilistic model for classification [10, 11].

The core component of all PAL methods is how to select
unlabeled data for querying their labels. In general,
existing methods can be organized into four categories,
namely disagreement-based, margin-based, clustering-
based, and optimization-based methods. The idea of
disagreement-based methods is to maintain a set of
candidate classifiers at each round and select unlabeled
examples in the region of disagreement of the candi-
date classifiers [12] . Based on the queried labels, the
algorithm updates the set of candidate classifiers that
are sub-optimal and proceeds to the next round. The
issue of disagreement-based methods is that they are
computational inefficient due to maintaining a set of
candidate classifiers and finding examples in the region
of disagreement. In margin-based active learning meth-
ods [13, 14, 15, 16, 17], a single classifier is maintained
in each round and a batch of unlabeled examples that
are close to the decision boundary are selected for query-
ing their labels. The issue of margin-based methods is
the sampling bias introduced by margin-based query
strategy, i.e., the training set quickly diverges from the
underlying data distribution [18]. To address this issue,

clustering-based approaches and optimization-based
approaches are developed.

In clustering-based approaches, the selection of un-
labeled data takes the cluster structure of the data
into account. Many different algorithms have been
proposed in this category with difference lying at how
to utilize the cluster structure [18, 19]. Nevertheless,
the clustering-based approaches heavily depend on the
metric used for clustering. Optimization-based ap-
proaches formulate the selection of a subset of unla-
beled data as an optimization problem. Many criteria
have been proposed for formulating the optimization
problem [20, 1, 2]. For example, Hoi et al. [1] formu-
lated the problem by minimizing the ratio between
two Fisher information matrices with one computed
from all unlabeled data and the other one computed
from the selected unlabeled data, which is motivated
by that the Fisher information matrix represents the
overall uncertainty of a classification model. Wang
& Ye [20] motivated the formulation by minimizing
the upper bound of true risk. Using standard learning
theory of empirical risk minimization, they derived an
additional term in the upper bound for active learn-
ing, which accounts for the difference between the true
data distribution and sampled data distribution and is
approximated by a maximum mean discrepancy term
computed from all unlabeled data and the selected
subset. However, the issue of most optimization-based
approaches is that the resulting optimization problem
is usually difficult to solve. Previous studies usually
seek approximation methods to solve the resulting op-
timization problems, which could still have polynomial
time complexity in the number of unlabeled examples.

In contrast, the proposed active learning framework el-
egantly avoid these issues mentioned above. First, it is
based on a robust optimization formulation, which can
be efficiently solved by popular (stochastic) gradient-
based methods. As a result, the proposed algorithm
has at most linear time complexity and could even
enjoy logarithmic time complexity using advanced data
structures for selecting unlabeled data. Second, the
selection probabilities for all unlabeled data are up-
dated in a systematic way for optimizing the robust
risk and their updating rule takes all data including
labeled and unlabeled data into account, thus avoiding
the issue of sampling bias. In addition, the proposed
method is robust to imbalanced data distributions due
to minimizing the robust risk. Last but not least, it
is grounded on an advanced learning theory instead of
classical learning theory of empirical risk minimization,
which achieves the best bias and variance tradeoff. We
will revisit each of these features in next section.
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3 A Robust Game Framework for
PAL

In this section, we present a robust zero-sum game
framework for PAL. In subsection 3.1, we present some
preliminaries and motivations. In subsection 3.2, we
present details of the proposed algorithm, and in sub-
section 3.3 we present theoretical justification and con-
vergence analysis of the proposed algorithm. Practical
implementations and extensions are considered in sub-
section 3.4.

3.1 Preliminaries and The Basic Idea

Without loss of generality, let us assume that ini-
tially we are given a pool of unlabeled examples
U = {x1, . . . ,xn ∈ X} where X ⊆ Rd, and the la-
beled pool L = ∅. Later on, we discuss how to handle
that a set of initial labeled examples are provided.
Below, we use capital letters (e.g., Y ) to denote a ran-
dom variable, and small letters (e.g., yi) to denote
an observed variable. Denote by 1 a vector of all
1s, by p = (p1, . . . , pn)> a set of probabilities such
that

∑n
i=1 pi = 1 and p ≥ 0. Let D(p,q) denote

a distance metric between two vectors. Two met-
rics will be discussed in this work, the KL divergence
D(p,q) =

∑n
i=1 pi log pi

qi
and the squared Euclidean

distance D(p,q) =
∑n
i=1(pi − qi)2.

Let Yi ∈ Y denote a (random) label of example xi. We
assume each pair (xi, Yi) follows an unknown distribu-
tion PX,Y = P (Y |X)PX over X × Y with the condi-
tional distribution denoted by P (Y |X). We consider
the labeling process of xi as a sampling yi ∼ P (Y |xi).
The heart of machine learning methods for learning a
prediction model is to minimize the following true risk:

min
w∈Ω

EX,Y [`(w;X,Y )], (1)

where `(·; ·) is termed the loss function and w denotes
the hypothesis or the model parameter. If we denote by
f(w;x) the prediction score of the model on x, the loss
function is usually written as `(w;x, y) = `(f(w;x),y).
For example, if the problem is a binary classification
problem Y = {1,−1}, commonly used loss functions
include hinge loss `(w;x, y) = max(0, 1−yf(w;x)) and
logistic loss `(w;x, y) = log(1 + exp(−yf(w;x))). The
prediction score can be computed as f(w;x) = w>x
by a linear model and can be also computed by a deep
neural network such that f(w;x) is the output of the
last layer before computing the loss value, where w
denotes the weights in the network.

The empirical risk minimization (ERM) in the passive
learning where the labels of training data are provided
{y1, . . . ,yn}, is motivated by the standard learning
theory, i.e., the uniform convergence that bounds the

true risk by the empirical risk for any w ∈ Ω [21]:

EX,Y [`(w;X,Y )] ≤ 1

n

n∑
i=1

`(w;xi, yi) + c
C(Ω)√
n
, (2)

where c depends on some parameters of the problem
and desired confidence socre and C(Ω) is some com-
plexity measure of the hypothesis class. Hence, ERM
is to solve the following problem:

min
w∈Ω

1

n

n∑
i=1

`(w;xi, yi) (3)

However, the above formulation has two issues: (i) in
active learning paradigm, the labels {y1, . . . , yn} are
not available beforehand, (ii) the standard learning
theory (2) neglects the data-dependence nature of the
variance of prediction, which is simply bounded by a
constant in deriving (2).

To address these two issues, we propose to solve the
following robust optimization problem:

min
w∈Ω

max
p∈∆n

n∑
i=1

piEY |xi
[`(w;xi, Y )], (4)

where p = (p1, . . . , pn)> is a probability vector and
∆n = {p ∈ Rn : p ≥ 0,

∑n
i=1 pi = 1, D(p,1/n) ≤ ρ

n} is
a constrained domain with ρ ≥ 0.

The robustness of the framework is due to the max-
imization over p ∈ ∆n and can be understood from
two viewpoints. First, from the robust optimization
perspective, the uniform weights 1/n used in ERM (3)
to weigh each individual data is not necessarily optimal
for minimizing the true risk (see theoretical justifica-
tion in next subsection). Hence, using the principle of
robust optimization [22], we aim to find w that can
minimize the worst case of weights p in ∆n that may
include the optimal weights. Second, by controlling
the distance between p and 1/n, we can recover two
existing learning paradigms, i.e., minimizing an average
loss and minimizing the maximal loss. It is easy to see
that when ρ = 0, the robust optimization problem (4)
reduces to an average loss minimization problem, and
when ρ → ∞, the robust optimization problem (4)
reduces to the maximal loss minimization problem. It
has been shown by previous studies that (i) minimiz-
ing the average loss is sensitive to imbalanced data
distributions (e.g. most data are from the negative
class) but is more robust to outliers than minimizing
the maximal loss [23]; and (ii) minimizing the maximal
loss is sensitive to outliers but is more robust to imbal-
anced data distributions than minimizing the average
loss [24]. Therefore, by controlling the distance between
p and uniform probabilities 1/n, the learned model
can be robust to both outliers and the imbalanced data
distributions.
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Algorithm 1 A Robust Zero-Sum Framework for PAL
1: Input: w1 ∈ Ω, initial stepsize: η0, α0

2: Initialize: p1 = (1/n, . . . , 1/n) ∈ Rn, U1 = U and
L1 = L

3: for t = 1, . . . , T do
4: Sample it ∈ [n] ∼ pt
5: if xit ∈ U t then
6: Query for the label yit of xit , and update

Lt+1 = Lt ∪ {(xit , yit}, U t+1 = U t \ {xit}
7: end if
8: Update wt+1 = ΠΩ[wt − ηt∇`(wt;xit , yit)]
9: Compute v̂t = (v̂t1, . . . , v̂

t
n) ∈ Rn by (5)

10: Compute qt = pt ◦ exp(αtv̂t)
11: Update pt+1 = arg minp∈∆n D(p,qt)
12: end for
13: Output: ŵT =

∑T
t=1 wt/T

Before ending this subsection, we mention that if an ini-
tial set of labeled data {xi, yi, i = 1, . . . nl} is provided,
we can replace the i-th component EY |xi

[`(w;xi, Y )]
by `(w;xi, yi).

3.2 The Algorithmic Framework
Next, we will present an algorithmic framework for
minimizing the robust objective in (4), which is a uni-
fied algorithm for learning the model parameters w
and selecting the unlabeled data for querying its label.
Here, we focus on the binary classification problem
where Y = {−1, 1} and the extension to multi-class
classification problem is presented in subsection 3.4.
The basic steps of the proposed algorithm are shown
in Algorithm 1. Please note that, Algorithm 1 does
not impose a budget on the number of queries. In
subsection 3.4, we will discuss how to handle the case
with a budget on the number of queries for unlabeled
data.

At each iteration, the algorithm selects one data point
from the set of all examples {x1, . . . ,xn} according
to the the sampling probabilities given by the current
probability vector pt. Let it ∈ {1, . . . , n} ∼ pt denote
the index of the sampled example at the t-th iteration.
If xit ∈ U t, we query for the label yit ∼ P (Y |xit) (the
labeling step) and then add xit into Lt and delete it
from U t. If xit ∈ Lt, the labeling step is skipped. Then
the algorithm proceeds to update w and p.

In Step 8, ηt ≥ 0 is a step size (see the convergence anal-
ysis in the next subsection), and ΠΩ[·] is a projection
operator defined as

ΠΩ[u] = arg min
w∈Ω

1

2
‖w − u‖22,

and the update for w can be explained as a stochastic
gradient update for the objective in (4). In particular,

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f(w,x)

v

logistic loss

(a) logistic loss

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

f(w,x)

v

hinge loss

(b) hinge loss

Figure 1: the value of v̂i vs f(w;xi)

it is easy to show that

E[∇`(wt;xit , yit)] = EitEyit |xit
[∇`(wt;xit , yit)]

=

n∑
i=1

piEY |xi
[∇`(wt;xi, Y )]

The update of pt in Step 10 & Step 11 can be un-
derstood as a mirror descent update using a Bregman
divergence D(p,q) [25], where αt ≥ 0 is a step size (see
convergence analysis in the supplement). The detailed
computation of pt+1 depends on the choice of Bregman
divergence and is postponed to subsection 3.4. The
motivation of Step 9 is to compute a gradient of the
robust objective in terms of pt given wt. In particular,
the gradient of pti is given as

vti = EY |xi
[`(wt;xi, Y )] = `(wt;xi, 1) Pr(Y = 1|xi)

+ `(wt;xi,−1) Pr(Y = −1|xi)

For labeled examples xi ∈ Lt+1, we can calculate an un-
biased estimate by v̂ti = `(wt;xi, yi), and for unlabeled
examples xi ∈ U t+1, we estimate Ey|xi

[`(w>t xi, y)] by
using an estimation of P (Y |xi) by P̂t(Y |xi), i.e.,

v̂ti =


`(wt;xi, yi) i ∈ Lt+1

`(wt;xi, 1)P̂t(Y = 1|xi)+ i ∈ U t+1

`(wt;xi,−1)P̂t(Y = −1|xi)
(5)

Estimation of P (Y |xi) for linear and deep mod-
els We estimate the true condition distribution by a
sigmoid function using the prediction score of the cur-
rent model on each example xi, i.e.,

P̂t(Y |xi) =
1

1 + exp(−Y f(wt;xi))
, (6)

where f(wt;xi) is a real-valued prediction score of the
model wt on the data xi such that the larger the value
of f(w;x), the higher probability for the data belonging
to the positive class.

More Understanding of the Selection of Un-
labeled Data Before ending this subsection, we
present more understanding of the selection of unla-
beled data, which sheds more insights on the updating
of pt+1. We will use the KL divergence D(p,q) =∑
i pi log pi

qi
as an example. However, the discussion
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can be extended to the Euclidean distance. The lemma
below shows that pt+1

i increases as v̂ti increases.

Lemma 1. If KL divergence is used in Algorithm 1,
then there exists γ > 0 such that pt+1

i ∝ (qti)
γ ,∀i ∈

{1, . . . , n}, where qt = (qt1, . . . , q
t
n) = pt ◦ exp(αtv̂t).

The proof of the above lemma can be found in [26]
(please refer to their Appendix C.2). For two com-
monly used loss functions for binary classification,
namely hinge loss `(w;x, y) = max(0, 1 − yf(w;x))
and `(w;x, y) = log(1 + exp(−yf(w;x))), we can also
show that vti is a monotonically decreasing function of
|f(w;x)| (please see Figure 1). Therefore, Lemma 1 im-
plies that the smaller the margin |f(w;x)|, the higher
probability value of pt+1

i , i.e., the higher chance for the
i-th example to be selected in next round. In other
word, among unlabeled examples those with smaller
margins will have higher probabilities to be sampled
for querying their labels. This effect is the same as
margin-based PAL methods [13, 14, 15, 16, 17]. How-
ever, the proposed algorithm does not suffer from the
issue of sampling bias as it is proposed for minimizing
the robust objective in (4) with sampling performed
on all data points {x1, . . . ,xn}.

3.3 Theoretical Analysis
In this subsection, we provide a theoretical jus-
tification of the distributionally robust optimiza-
tion (4) and a convergence analysis of the pro-
posed algorithm. For simplicity of presentation, we
define ¯̀(w;X) = EY |X [`(w; |X,Y )] and ¯̀(w) =

(¯̀(w;x1), . . . , ¯̀(w;xn))>.

The distributionally robust optimization (4) is moti-
vated by a refined upper bound of the true risk (e.g.,
by Bennett’s inequality) [27],

EX [¯̀(w;X)] ≤
∑n
i=1

¯̀(w;xi)

n
+ c1

√
VarX(¯̀(w;X))

n

+
c2
n
, (7)

where w ∈ Ω, c1, c2 depend on some parameters of the
problem and desired confidence score, and VarX de-
notes the variance over random variable X. The above
upper bound includes both the bias (the first term) and
the variance (the second term) of the prediction, which
are two key components in the testing error. Therefore,
a good model should optimize the above upper bound
that balances between bias and variance. However,
the above upper bound is a non-convex function of
w and depends on unknown distribution involved in
VarX(¯̀(w;X)), which make it difficulty to optimize.
To this end, a distributationaly robust optimization
problem was proposed in [8]. Below, we extend the
results in [8] for passive learning to our active learning
setting to justify the proposed algorithm.

Theorem 1. Assume that ¯̀(w;X) ∈ [0,M ] for
w ∈ Ω, and D(p, q) is the squared Euclidean dis-
tance. If n ≥ max(5, M

2

σ2 max(8σ, 44)), with probability
1− exp(nσ2/11M2), we have

max
p∈∆n

n∑
i=1

pi ¯̀(w;xi) =
1

n

n∑
i=1

¯̀(w;xi)+

√
ρ

n
Varn(¯̀(w;X)),

where σ = VarX(¯̀(w;X)), and Varn(¯̀(w;X)) denotes
the empirical variance of ¯̀(w;X) computed based on
the given data. If additionally n ≥ ρ/2 ≥ 9 log 12 and
ŵ denotes the optimal solution to (4), then

EX [¯̀(ŵ;X)] ≤ 6Mρ

n
+

min
w∈Ω

{
EX [¯̀(w;X)] + 2

√
ρ

n
VarX(¯̀(w;X))

}
Remark: The first equality in the above theorem
shows that the robust risk maxp∈∆n

∑n
i=1 pi

¯̀(w;xi) is
a good approximation of the upper bound of the true
risk in (7) when the number of examples n is large
enough, which justifies the distributationaly robust op-
timization problem (4) for active learning. The second
inequality implies that if the variance of the optimal
solution w∗ for minimizing the true risk (1) is small
(e.g., VarX(¯̀(w∗;X)) ≤ O(1/n)), then the excess risk
(or called the statistical error) of the optimal solution
to (4) is in the order of O(1/n), i.e.,

EX [¯̀(ŵ;X)]− EX [¯̀(w∗;X)] ≤ O(1/n), (8)

which is smaller than the standard statistical error of
O(1/

√
n) of ERM [21].

Next, we present the convergence analysis of Algo-
rithm 1 for minimizing the robust risk. The purpose of
our convergence analysis is to demonstrate that in some
restrictive settings, Algorithm 1 can converge to the op-
timal solution to (4) up to a statistical error, lending fur-
ther justification to the updates in Algorithm 1. In par-
ticular, we consider linear model f(w;x) = w>x and
the loss function `(w;x, y) = `(yw>x) to be a convex
function of w. Let R(w) = maxp∈∆n

∑n
i=1 pi

¯̀(w;xi)
denote the robust risk, ŵ denote the optimal solution
to minimizing the robust risk (4) and w∗ denote the
optimal solution to minimizing the true risk (1). We
make the following assumptions for our convergence
analysis.
Assumption 2. We assume that

• there exists c > 0 and β ∈ (0, 1] such that
‖ŵ − w∗‖2 ≤ c

(
EX [¯̀(ŵ;X)]− EX [¯̀(w∗;X)]

)
≤

O(1/nβ);

• there exists ĉ > 0 such that ‖w− ŵ‖2 ≤ ĉ(R(w)−
R(ŵ)) for any w ∈ Ω;

• For any w ∈ Ω, there exist r,M,G such
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that ‖w‖2 ≤ r, `(w;xi, Y ) ∈ [0,M ],
‖∇`(w;xi, yi)‖2 ≤ G, and all examples are nor-
malized such that ‖xi‖2 ≤ R, and MRĉ ≤ 1/2;

• the conditional distribution is given by P (Y |x) =
1

1+exp(−Yw>∗ x)
.

Remark: The first and second assumptions assume
that the problem (1) and (4) satisfy certain regularity
condition (namely weak sharp minimum condition [28]).
It can be satisfied e.g., when `(w;x, y) is a hinge loss
and w>x ≤ 1 [29, 30]. O(1/nβ) denotes the statisti-
cal error of the robust risk minimizer ŵ. The third
assumption is a standard assumption for convergence
analysis. The last assumption is based on that w∗ is
the Bayes optimal solution (i.e., the loss function is
Fisher consistent), which is true for many surrogate
loss functions such as hinge loss and logistic loss [31].
Under the above assumptions, we prove the following
convergence results.
Theorem 3. Under Assumption 2, with αt = α ∝√

1
T , ηt = η ∝

√
1
T we have:

E[R(wτ )−R(ŵ)] ≤ O
(

1√
T

+
1

nβ

)
where τ ∈ 1, . . . , T is uniformly sampled from
{1, . . . , T}.

Remark: The above theorem shows that a random
iterate wτ of Algorithm 1 converges to the optimal
solution ŵ (in expectation) up to a statistical error
O(1/nβ) when T = O(n2β). Although the convergence
is provided for a randomly selected solution wτ , in
practice the averaged solution ŵT is more robust.

3.4 Implementation and Extension
In this subsection, we provide some implementation
details and extensions.

Efficient Update of pt+1. [26] discussed the up-
dates of pt+1 for different Bregaman divergences that
defines the constrained domain ∆n. In this work,
to avoid additional overhead handling the constraint
D(p,1/n) ≤ ρ/n, we consider minimizing a regularized
version of the robust risk, i.e.,

max
p≥0,

∑
i pi=1

p> ¯̀(w;xi)− λD(p,1/n) (9)

To tackle this objective, the Step 11 of Algorithm 1
can be replaced by using a proximal mapping of the
regularizer:

pt+1 = arg min
p≥0,

∑
i pi=1

D(p,qt) + αtλD(p,1/n)

which can be computed in a closed form for both KL
divergence and squared Euclidean divergence. We refer
the readers to [26] for more details due to limit of space.

Therefore the update of pt can be performed in a time
complexity of O(n). The same convergence result as
in Theorem 3 can be established.

Extension to multi-class classification problem.
For multi-class classification problem with Y =
{1, . . . ,K}, the cross-entropy cost function `(w;x, y) =

−
∑K
k=1 I(y = k) log exp(fk(w,xi))∑K

l=1 exp(fl(w;xi))
can be used,

where I(·) is an indication function. The estima-
tion of v̂ti for unlabeled data can be computed by∑K
k=1 `(w;xi, k)P̂t(Y = k|xi), where P̂t(Y = k|xi) can

be computed by softmax function using current model
parameters.

An implementation with log(n) time complexity
per iteration. Using advanced data structures and
a stochastic update of pt+1 (i.e., using a stochastic
gradient to update p), each iteration can cost up to
O(log(n)) time complexity. We omit the details due
to limit the space (please refer to [26]). However, the
number of iterations could be increased due to the
variance in the stochastic gradient of pt+1. In our
experiments, we use the full version as outlined in
Algorithm 1.

A Budget on the Number of Queries. If there
is a budget on the number of queries, we can change
Algorithm 1 in the following way. After the budget
of querying the labels of unlabeled data is used up at
some iteration t, we continue the training by (i) only
sampling data from labeled pool with a probability
vector p̂t ∈ Rnl (nl is the size of labeled pool) that is
normalization of components in pt corresponding to
the labeled data, and (ii) by updating the probability
vector p̂t ∈ Rnl and the model parameter wt using
the labeled data at each iteration, until the process
converges.

4 Experiments
In this section, we present some experimental results to
justify the proposed method for PAL and also compare
with existing PAL methods on learning both linear
models and deep neural networks.

4.1 Synthetic Data
We first conduct experiments on a synthetic data to
verify the robustness of the proposed PAL framework
to imbalanced data and outliers as articulated in Sec-
tion 3.1. To this end, we generate an imbalanced
2-dimension data set as shown in Figure 2, where there
are 5 positive examples denoted by + and 100 neg-
ative examples denoted by ×. The label budget is
10 and iteration number is 10000. Examples of the
two classes follow a Gaussian distribution. In order to
create an outlier, we flip the label of the point at the
lower left corner to the negative class. Then we run
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Figure 2: ‘+’ represent positive samples and ‘×’ represent negative samples. There is an outlier ‘×’ on the lower
left corner. The blue lines are the learned decision boundary and the arrows point to the half-space that is
classified as positive. The squares, circles and diamonds represent the data points selected by active learning
algorithm for labeling. Maximal loss can be easily misled by noise or outlier; while average loss may neglect small
amount of misclassified data. ‘RM’: risk minimization.

the proposed PAL with different values of the regular-
ization parameter λ as in equation (9). In particular,
we use three values, λ = 0 corresponding to maximal
risk minimization, λ = ∞ corresponding to average
risk minimization, and λ = 1 corresponding to a ro-
bust risk minimization. The step size αt = 1/

√
t and

ηt = 0.1/
√
t. The result is shown in Figure 2. From

the result, we can see that (i) minimizing the maximal
risk is sensitive to the outlier and the learned classifier
is misled by the outlier; (ii) minimizing the average
loss is robust to outlier but sensitive to the imbalanced
data distribution, and the learned classifier predicts
most examples as negative; (iii) minimizing a robust
risk is robust to both the outlier and the imbalanced
data distribution, yielding the best prediction result.
This experiment clearly justifies the robustness of the
proposed robust risk minimization for PAL.

4.2 Active Learning of Linear Models
In this subsection, we compare the proposed method
with several existing PAL methods for active learning
of linear models:

• RS: querying by random sampling. At each round it
selects a batch of samples uniformly at random from
the unlabeled data pool for labeling.

• MADI: margin-based querying by incorporating the
diversity of selected examples [15]. This is a batch-
mode margin-based PAL method improved by incor-
porating data diversity.

• RMADI: similar to the MADI method except that
the classifier is learned by minimizing the robust
risk [8] instead of by ERM. We compare with this
method in order to verify that the proposed unified
framework is better than this ad-hoc approach.

• MRFI: querying by minimizing the ration of Fisher
Information matrices to preserve data distribution [1].
This is an optimization based batch-mode PAL
method.

• BMDR: querying by balancing informative and rep-
resentative samples [20]. This is also an optimization
based batch-mode PAL method.

The proposed PAL method is referred to as RZSG - a
robust zero-sum game framework for PAL.

We conduct experiments on 10 binary classification
datasets from UCI Machine Learning Repository [33]
and LIBSVM Data website [34], namely, madelon,
svmguide3, breast cancer, twonorm, ringnorm, flare
solar, heart, german, diabetis, and duke breast can-
cer. 1 The statistics of these datasets are summarized
in the Supplement.

We note that all methods have regularization param-
eters for learning the classifier on the labeled data
points. The values of the regularization parameters of
each method are tuned by 5-fold cross validation. In
particular, we split the training into 5 folds and do cross
validation by using the corresponding passive learning
algorithm for each PAL algorithm. The best value of
the regularization parameter is selected based on the
validation performance and used for running each PAL
algorithm on the original training data. Finally, the
learned classifier of each PAL algorithm is evaluated
on the testing data for comparison. For batch-model
PAL methods (RS, MADI, MRFI, BMDR, RMADI),
we use various batch sizes for different data sets. In
particular, for datasets with a training size < 100, the
batch size is 5; with a training size in (100, 1000], the
batch size is 20; and with a training size in (1000, 5000],
the batch size is 50. For all PAL algorithms, we inde-
pendently repeat the experiments 10 times and report
the averaged testing accuracy.

For all baseline methods except for RMADI, we use the
LIBSVM [34] library to learn a SVM classifier. The
hinge loss as employed by SVM is also used in our
method. There are also some other parameters for

1Some of UCI benchmark datasets have
been preprocessed and can be downloaded at
http://theoval.cmp.uea.ac.uk/matlab/.
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Figure 3: Active learning of linear models (a)∼(j), and of deep neural networks (k,l).

each PAL method. They are set to their suggested
values in the original papers. For example, MADI and
RMADI have a trade-off parameter between quality
and diversity, which is set to 0.5; BMDR has a tun-
able parameter β, which is set to 1000. Our method
has two other parameters αt and ηt for the step sizes,
which are set based on the theoretical analysis (cf. the
Supplement).

In each figure 3 (a∼j), the x-axis represents different
budget values and the y-axis represents the testing
accuracy. From the results, we can see the superiority of
the proposed PAL method. In general, not only robust
regularizer can improve active learning performance
(RMADI is better than MADI), but also our unified
active learning strategy can further boost performance.

4.3 Active Learning of Deep Neural
Networks

Next, we present some experimental results for active
learning of deep neural networks. To this end, we
use two benchmark datasets, namely MNIST [35] and
CIFAR-10 [36] (dataset statistics are in the supple-
ment). The two baseline methods MRFI and BMDR
are proposed for binary classification and they are not
easily extended to multi-class classification. The base-
line RS can be implemented without any change. We
extend the baseline MADI to the multi-class classifi-
cation by using the entropy of estimated class proba-
bilities as the quality measure. The selection of top
examples for MADI is based on a sampling method
with sampling probabilities proportional to the predic-
tion score, which we find to be more effective than the
strategy in the original paper, i.e., simply selecting the

examples based on the margin score. We use convolu-
tional neural networks (CNN) as the prediction model
with cross-entropy as the loss. The CNN for MNIST
consists of two convolutional layers with 5 × 5 filters
and ReLU activation function, two max pooling layers
with 2×2 filters and stride of 2, and two fully connected
layers with 1024 and 10 neurons; and that for CIFAR-
10 is a simplified AlexNet [37]. For our method RZSG,
the step size parameter is set to αt = 10, ηt = 0.001 for
MNIST. For CIFAR10, they are set to αt = 0.01 and
ηt = 0.001. Adam [38] is employed as the optimizer for
CNN. The results are shown in Figure 3 (k, l), which
again demonstrate the the proposed method is much
better than the baselines.

5 Conclusions
We have proposed a novel robust zero-sum game frame-
work for pool-based active learning. It is the first work
that uses a unified framework for selecting unlabeled
examples and for updating the models to minimize a
robust risk. We have analyzed the proposed method
from different perspectives and demonstrated that it
is robust to imbalanced data distribution and outliers,
avoids sampling bias, and is efficient. We also con-
duct extensive experiments to justify and verify the
effectiveness of the proposed method, which clearly
demonstrate its superior performance comparing with
the state-of-the-art pool based active learning methods.
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