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Abstract—Interpersonal mutual influence occurs naturally in
social interactions through various behavioral aspects of spo-
ken words, speech prosody, body gestures and so on. Such
interpersonal behavior dynamic flow along an interaction is
often modulated by the underlying emotional states. This work
focuses on modeling how a participant in a dyadic interaction
adapts his/her behavior to the multimodal behavior of the
interlocutor, to express the emotions. We propose a weighted
geodesic flow kernel (WGFK) to capture the complex inter-
personal relationship in the expressive human interactions.
In our framework, we parameterize the interaction between
two partners using WGFK in a Grassmann manifold by fine-
grained modeling of the varying contributions in the behavior
subspaces of interaction partners. We verify the effectiveness of
the WGFK-based interaction modeling in multimodal emotion
recognition tasks drawn from dyadic interactions.

1. Introduction

Interpersonal mutual influence occurs naturally in social
interactions, notably in the unfolding emotional dynamics,
through various behavioral aspects, such as spoken words,
speech prosody, body gestures. Indeed, in order to accom-
plish effective communication, individuals usually adapt
their verbal and non-verbal behaviors to those of their
interaction partners. Such behavior adaptation (also related
to variedly known notions of entrainment and coordination)
is synchronized in time and expressed as either similar or
dissimilar behaviors [1]. The mutual behavior effect controls
the dynamic flow of a conversation, shapes the overall
interaction patterns, and facilitates the communication to
move smoothly, efficiently, and coherently.

Human communication is an interactive process of con-
tinuously unfolding human behaviors, established on a com-
mon ground of interaction participants. Emotions, a major
component of the communication structure, play a crucial
role in how we think and behave and allow humans to
understand each other better. The underlying emotional
states modulate not only the multimodal behavior dynamics
of individuals but also the interpersonal behavior dynamic
flow. Understanding and computationally modeling the un-
derlying emotional effect on interaction dynamics of human
behavior can bring insights into automating emotion recog-

nition and facilitate the design of intelligent human-machine
interfaces in a variety of applications.

This work focuses on exploring how an interacting par-
ticipant adapts his/her behavior to the multimodal language,
i.e., gesture and speech, of the interlocutor, to express the
internal emotions in a dyadic interaction. In particular, we
propose a weighted geodesic flow kernel (WGFK) to capture
the mutual influence between dyadic interaction partners.
The geodesic flow kernel (GFK) has been previously used
to solve domain adaptation problems [2]; such as for achiev-
ing good recognition performance on mobile phone images
(target domain) using the classifiers trained on Web images
(source domain). Yang and Narayanan, instead, used GFK
to parameterize the interaction between two partners and
showed superior results on emotion recognition in dyadic
interactions [3].

However, GFK simply averages the interaction cues
embedded in a series of subspaces in a Grassmann manifold,
without fine-grained modeling of their potentially varying
contributions to the interpersonal mutual influence. We argue
that it is suboptimal to use GFK in such a way, and note
that the interacting partners could possess distinct behavior
idiosyncrasies and thus should be modeled as two domains.
Human communication involves a variety of dynamics and
complexity over time, making it difficult to fully capture
such complex interpersonal relationship in real-life inter-
actions. Such dynamics may be embedded in different in-
teraction modality subspaces to different degrees, but GFK
treats them equally important. To this end, we propose to
improve GFK [2], [3] by weighing the subspaces along the
geodesic flow according to the detailed expression interac-
tions. This effectively increases GFK’s modeling capacity,
enabling the resultant approach, which we call weighted
GFK (WGFK), to better capture the interpersonal interaction
characteristics. In what follows, we discuss related work,
present the philosophy behind choosing the weight function
for WGFK, and then verify its effectiveness in multimodal
emotion recognition.

2. Related Work

The behavior adaptation phenomenon in human com-
munication in terms of vocal patterns, head motion, and
body gestures has been well-established in the psychology



domain. For example, in the research on interpersonal rela-
tions, behavior synchrony in a couples interaction has been
shown to offer predictive markers of the couples mental
distress and well-being conditions [4] [5]. Chartrand et
al. described that humans unconsciously mimic the behavior
of their interaction partners to achieve more effective and
pleasant interactions [6]. Ekman found that body language
of interviewees is distinctly different between friendly and
hostile job interviews [7]. Neumann et al. reported that the
emotions in speech would induce a consistent mood state
in the listeners [8]. Kendon qualitatively described detailed
interrelations between movements of the speaker and the
listener by analyzing sound films of social interactions [9].
He also found that the movement of the listener might be
rhythmically coordinated with the speech and movement of
the speaker in a social interaction. The work in [10] has
demonstrated a high degree of unintentional coordination
between rhythmic limb movements of two partners.

Many engineering works have also been developed based
on this mutual influence of interaction subjects. Levitan et
al. found that interacting partners tend to utilize similar sets
of backchannel-preceding cues which are a combination of
speech cues of an individual in response to one’s interlocu-
tor [11]. Morency et al. predicted head nods for virtual
agents from the audio-visual information of a human speaker
based on sequential probabilistic models [12]. Heylen et
al. studied what types of appropriate responses, e.g., facial
expressions, an agent should display when a human user is
speaking, to increase rapport in human-agent conversation
[13]. Researchers have also used the emotional state of
an interlocutor to inform that of a speaker by modeling
emotional dynamics between two interaction participants
[14] [15]. The influence framework proposed in [16] models
participants in conversational settings as interacting Markov
chains. Lee et al. proposed prosody-based computational
entrainment measures to assess the coordination in the in-
teractions of married couples [17]. Robotics research has
shown that human subjects use the robot’s cues to regulate
conversations and to convey affective intentions, resulting in
a smoother interaction with fewer interruptions [18].

Since emotion is one of the major elements influencing
the multimodal channels of human speech, body gestures,
and facial expressions, the interaction patterns of a dyad’s
behavior are accordingly shaped by the underlying emo-
tional states [1]. For example, two participants with friendly
attitudes may tend to approach each other, while those with
conflictive attitudes may try to fight with or avoid each other.
The analysis work in [19] has empirically revealed that the
coordination patterns of a dyad’s behavior depend on the
interaction stances assumed (e.g., friendly vs. conflictive).
Lee et al. also investigated the relationship between affec-
tive states (positive vs. negative) and the vocal entrainment
strength in married couples’ interactions. A higher degree
of vocal entrainment was found for couples with positive
attitudes [20].

Motivated by these findings on the interrelation between
emotions and interpersonal influence, researchers have made
progress in modeling such mutual effect in interactions for

enhancing the performance of recognizing the emotional
states of individuals [15] [21]. The benefits of incorporating
mutual influence into the emotion recognition framework
have been validated in these studies. There has also been
much research on modeling the behavioral interaction for
action recognition [22] [23]. Most of these studies have
relied on training with statistical models, e.g., coupled
HMMs, which usually require significant amounts of data.
Mariooryad et al. exploited emotion-related patterns in be-
havioral interactions [24], which is similar to this work.
However, they simply concatenated behavioral information
of two partners for assessing the emotional state of an
individual without modeling the latent interaction structure
of the dyad’s behavior.

3. Database Description

In this work, we use the USC CreativelT database for
dyadic interaction modeling [25] [26]. It is a multimodal
database of dyadic theatrical improvisations performed by
pairs of actors. Interactions are goal-driven; actors have
predefined goals, e.g., fo comfort or to avoid, which can
elicit natural realization of emotions as well as expressive
multimodal behavior. There are 50 interactions in total per-
formed by 16 actors (9 female). The audio data of each
actor was collected through close-talking microphones at
48kHZ. A Vicon motion capture system with 12 cameras
captured the detailed full body Motion Capture (MoCap)
data at 60 fps, i.e., the (x,y, z) positions of the 45 markers
of each actor, as shown in Fig. 1(a).
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(a) Motion Capture Markers. (b) Angles for hand joints.

Figure 1. (a) The positions of the Motion Capture markers; (b) The
illustration of Euler angles for hand joints.

3.1. Gesture and Acoustic Features

This work focuses on multimodal behavior of speech
and hand gesture which are highly expressive forms in
human communication. We manually mapped the motion
data, i.e., the 3D locations of markers, to the angles of
different human body joints using MotionBuilder [27]. The
joint angles are popular for motion animation [28] [29] and
have also been applied for exploring attitude-related gesture
dynamics in our previous work [30]. Fig. 1(b) illustrates the
Euler angles (6, ¢,) of hand joints (arm and forearm) in
x, y, z directions. The angles of both right and left hand
joints are used as hand gesture features. In addition, we
extracted acoustic features of pitch and the rms energy, as
well as 12 Mel Frequency Cepstral Coefficients (MFCCs)
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Figure 2. Illustration of setting up dialog turn pairs. The target dialog turns
are with emotion annotations.
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for each actor. These features were extracted every 16.67 ms
(60 fps) with an analysis window length of 30 ms, in order
to match with the MoCap frame rate. The pitch features
were smoothed and interpolated over the unvoiced/silence
regions. We further augment both hand gesture and acoustic
features with their 1st derivatives to incorporate the tempo-
ral dynamics.

3.2. Emotion Labels

The emotional state of each actor was annotated in terms
of activation (excited vs. calm) and valence (positive vs. neg-
ative) by three or four annotators. To capture the continuous
flow of body gestures during an improvisation, we annotated
time-continuous emotion for each actor throughout the in-
teraction. Annotators used the Feeltrace instrument [31] to
time-continuously indicate the emotion attribute value from
—1 to 1 for each actor while watching the video recording.
More details of the annotation process can be found in [32].

As described in [32], we define the inter-rater agreement
for the continuous emotion annotations as the linear corre-
lation between two annotators. For each actor recording, we
compute the correlation between every pair of annotators
and only keep the annotator pairs with correlations greater
than 0.5. We further partition each actor recording into
dialog turns according to speech regions. As a result, we
have 1230 annotated dialog turns (referred to as the target
turn hereafter) in total. Each target turn is paired with the
corresponding interlocutor’s previous turn, as illustrated in
Fig. 2. Our work focuses on modeling interaction behavior
between the paired dialog turns. The values of activation
and valence of each target turn are calculated by averag-
ing the annotations among frames and across annotators.
We jointly consider activation and valence by creating K
emotional clusters in the valence-activation space using k-
means algorithm. Such K-class recognition scheme has also
been adopted in [24] [33]. We consider clusters with K = 2
and K = 3, and Fig. 3 shows the corresponding clustering
results.

4. Approach

In this section, we elaborate our approach to the model-
ing of interpersonal mutual influence in affective dyadic in-
teractions. We first revisit the geodesic flow based modeling
and then show how to improve it by a tailored weight func-
tion. We verify the effectiveness of the proposed weighted
geodesic flow kernel (WGFK) on the emotion recognition
task from the affective dyadic interactions.
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Figure 3. Resulting emotion classes
K =2and K = 3.
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4.1. Revisiting the Geodesic Flow Based Interaction
Modeling

The main objective of this work is to model the mutual
influence of a dyad in an affective interaction. Seeing the
partners involved in the interaction as two “domains”, Yang
and Narayanan propose to model them based on the geodesic
flow on a Grassmann manifold, originally developed for
domain adaptation [2].

Specifically, each dialog turn of a target participant is
paired with the corresponding interlocutor’s previous turn,
as illustrated in Fig. 2. Such turns are related by the par-
ticipants’ interactions and yet are also distinct from each
other, due to different personal behavior habits. Therefore,
if we respectively embed the turns of the two participants
into two subspaces Pr € RP*4 and P; € RP*4 of
lower-dimensions than the dimensionality D of their feature
representations x € R”, we expect the two subspaces to
overlap to some extent. Geometrically, any two subspaces
could be connected continuously by a shortest path on the
Grassmann manifold, along which each point itself is also
a subspace of the same dimension. The shortest path is
called a geodesic flow ®(t), where ¢ is between O and 1,
®(0) = Pr, and ®(1) = P;. We refer the readers to [2]
and [3] for the details of computing the geodesic flow.

In the context of this paper, the geodesic flow assembles
the behavior characteristics of each participant in the inter-
action and parameterizes the gradual adaptation from the in-
terlocutor to the target participant. Given two D-dimensional
behavior vectors x7 and x; from the target subject and the
interlocutor, respectively, their projections into any subspace
®(t) on the flow are calculated by ®(¢)"x7 and ®(¢)7x;.
Each t € [0, 1] enforces some particular characteristics of
the interaction and suppresses the others. In other words,
the infinite number of subspaces ®(¢), ¢ € [0, 1], disentangle
the interaction patterns to different aspects. Jointly, all the
projections integrate the behavioral characteristics of both
interaction partners.

Interaction Matrix. Although the geodesic flow quantita-
tively represents the mutual influence between the interac-
tion partners, it is computationally infeasible to handle the
infinite number of subspaces or projections. To tackle this



problem, an interaction matrix is derived in [3] as follows.
Concatenating all the projections into a vector zZ for the
target and z$° for the interlocutor; both vectors are infinite-
dimensional. Their inner product is given by a closed form,

(25, 2%°) = /0 1 (@(t)TxT)T(q»(t)Tx,)dt
= x§</01 <I>(t)'I>(t)Tdt> X7 ()

T
= x7Gxy,

where the matrix G € RP*P is called the geodesic
flow kernel in [2]. Since G is positive semidefinite, we
decompose it into G = MMT? by the singular value
decomposition, i.e., G = UTUT and immediately we have
M = UTz. The new matrix M € RP*P is referred to as
the interaction matrix [3]. As a result, instead of directly
dealing with the geodesic flow, it is equivalent to transform
the features using this interaction matrix. One may use the
transformed features in a variety of tasks that may benefit
from the mutual influence between a dyad. We will study
emotion recognition in the experiments of this paper.

4.2. Weighted Geodesic Flow for Finer-Grained
Interaction Modeling

In this section, we propose to improve the geodesic flow
based modeling of the mutual influence effect between the
interaction partners.

Motivation. Our motivation draws on Equation (1), which
treats all the subspaces equally important along the geodesic
flow. We argue that this could be suboptimal in the sense
that the intermediate subspaces between that of the target
®(0) and that of the interlocutor ®(1) are not supported
by any data at all. Instead, they are purely interpolated by
the mathematical tool derived on the Grassmann manifold.
However, as human communication involves a variety of
dynamics and complexity over time, does the interpersonal
relationship in real-life interactions fully follow such ge-
ometric imposition? Our intuition says no. The further a
subspace is from ®(0) and ®(1), the less useful information
it may attain of the interaction turns; in the extreme case,
some of them may correspond to the noise in the data. In
order to describe more detailed and expressive interaction
structures, we propose a fine-grained modeling about the
interactions by weighing the subspaces along the geodesic
flow differently. We describe the philosophy of choosing the
importance function below.

Importance Function. We propose to use an importance
function w(t),t € [0,1] to weigh the subspaces along the
geodesic flow ®(¢) between the dyad. It is desired to possess
three properties. 1) Positivity: w(t) > 0 for all ¢t € [0,1];
2) Normalization: fol w(t)dt = 1; and 3) Symmetry: w(t) =
w(1l —t), where t € [0,1]. The symmetry property assumes
both participants of a dyad equally contribute to interaction

characterization. It could be removed if we had some prior
knowledge that a participant is more dominant than the other
in the interaction.

Immediately, the uniform importance function used in
Equation 1 satisfies the above properties, so do many
other functions. Mathematically, exponential and polynomial
functions are more desirable since they lead to closed-form
solutions to the interaction in Equation 3 with sufficient
modeling flexibilities. In this work, we design the impor-
tance function w(t) based on exponential functions:

ce—ct + ec(t—l)

t) =
wit) = 5= =

,t €10,1], 2)
where the free parameter c¢ controls the shape of the im-
portance curve along the geodesic flow and characterizes
detailed interaction structures between a dyad’s behavior.
Fig. 4 plots such importance functions with different ¢
values. When c is far from 0, high importance is assigned
to the subspaces near the two ends of the flow; when ¢
approaches 0, w(t) becomes flat so it degenerates to the
case in Section 4.1 where all the subspaces have equal
contributions.

Importance Function w(t)

Figure 4. Importance function with different ¢ values. Different line colors
represent different ¢ values. When c¢ approaches 0, the importance function
approaches a straight line.

Weighted Interaction Matrix. With the importance func-
tion defined, each point ®(t) on the geodesic flow is multi-
plied by the importance value w(t) before we integrate them
together. Following Equation 1, we thus arrive at a weighted
geodesic flow kernel G,:

T

G — /0 w(t)®()] [w(t)@ (1)) dt 3)

Correspondingly, we further obtain the weighted interaction
matrix M,,: G,, = M,MZ, which describes more de-
tailed and expressive interaction structure than the uniformly
weighted one (cf. Section 4.1). In order to take advantage of
the mutual influence between the dyad for emotion recogni-
tion, we transform a data point x by the weighted interaction
matrix before sending it to a classifier.



S. Experimental Results and Analysis

We use emotion recognition as the proxy task to exper-
imentally verify the effectiveness of the proposed weighted
interaction matrix for modeling the mutual influence effect
between a dyad in affective interactions. However, it is
noteworthy to point out that other tasks may also benefit
from our approach if they are related to the dyad’s mutual
influence effect. We present the main comparison results
first, followed by detailed analysis about the weight func-
tion.

5.1. Emotion Recognition Results

Recall that the emotion state is manually annotated
for a target turn based on multimodal behavior signals of
the interaction. Our goal is to train a classifier from such
data to automatically infer the emotion states from novel
multimodal behaviors by investigating the mutual influence
of the dyad. The classifier takes f = MZx as the input,
where the weighted interaction matrix M, transforms the
interlocutor features x per interaction. Here the interlocutor
features represent speech (audio) and hand gesture (visual)
signals of the interaction (cf. Section 3), while the new
feature vector f induces the interaction information between
a dyad. In the following experiments, we employ linear
SVM as the classifier and report the average results obtained
by the leave-one-interaction-out strategy.

In the interaction model, we apply principal component
analysis (PCA) to identify subspaces Pr and P; € RP*4
for the target and interlocutor behavior in each interac-
tion. The subspace dimension d is determined using cross-
validation on the training set.

Baselines. For comparison, we also evaluate the same type
of classifier’s recognition performance using three other
types of input features: 1) the plain behavioral features
of the target turn (T), i.e., xp directly extracted from the
speech and gesture signals; 2) the behavioral features of
both the target and interlocutor turns (T + I), i.e., xp and
x 7, which have also been used in [24]; and 3) the geodesic
flow based modeling [3] (Geodesic), i.c., MTx. For 2), we
follow the practice of [24] and calculate eight high level
statistical functionals for each target or interlocutor turn in
a dialog turn pair; they are the mean, median, standard
deviation, range, lower quartile, upper quartile, minimum,
and maximum from either our mapped or original behavioral
features.

Results. Tables 1 and 2 respectively present the results for
recognizing 2-Class and 3-Class emotions in the valence-
activation space (see Fig. 3). Our approach is contrasted to
the three baseline methods described above.

We draw the following observations from the tables.
First of all, we find that the speech cues generally show a
higher discriminative capability for distinguishing emotional
dimensions than the hand gesture behavior. This is probably
because the activation dimension can be better perceived

TABLE 1. ACCURACIES (%) FOR RECOGNIZING 2-Class emotions IN
THE VALENCE-ACTIVATION SPACE FROM INFORMATION OF THE TARGET
TURN (71"), INFORMATION FROM BOTH TARGET AND INTERLOCUTOR
TURNS (7" + I) [24], AND USING INTERACTION MODELING.

Features \ T T +1I Geodesic Ours
Audio | 58.5 59.7 69.0 70.0
Visual | 57.8 61.9 65.5 66.4
Audio-Visual | 58.7 61.8 71.8 73.0

TABLE 2. ACCURACIES (%) FOR RECOGNIZING 3-Class emotions IN
THE VALENCE-ACTIVATION SPACE FROM INFORMATION OF THE TARGET
TURN (T'), INFORMATION FROM BOTH TARGET AND INTERLOCUTOR
TURNS (T + I) [24], AND USING INTERACTION MODELING.

Features | T T+1I Geodesic Ours
Audio | 47 46 54.5 56.5
Visual ‘ 39.6 44 52.4 54.0

Audio-Visual | 45.6 45 55.9 57.0

from audio cues [34]. Besides, including the interlocutor
information to the target turns (T + I) generally improves
the recognition performance of target only (T), indicating
that the interlocutor’s multimodal behavior provides com-
plementary information about the emotional state of the
target subject during a dyadic interaction. These results are
consistent with the findings in [24].

Finally, we note that our approach, the weighted
geodesic flow based interaction model, significantly out-
performs the baselines under all conditions. For example,
the recognition accuracy is 58.7% and 61.8% respectively
using the audio-visual information from the target turn and
from both dyadic turns. The performance improves to 71.8%
with the geodesic flow based and further to 73.0% with
our weighted geodesic flow based model. This observation
corroborates that the dyad’s behavior under such modeling
can serve as additional indicators of the embedded emotion
in the target turn. The weighted the interaction matrix M,,
effectively captures the dyadic behavior coordination struc-
ture in a quantitative fashion.

5.2. The Importance Function

In this section, we analyze the importance function in
detail. In particular, we investigate how the shapes of the
importance function w(t) affect the interaction modeling and
further influence the emotion recognition performance.

Fig. 5 shows the relations between the 3-Class emotion
recognition performance and the free parameter c of the
importance function w(t) using different types of features
(i.e., audio, visual, and both of them). For comparison, we
include the geodesic flow based results in the figure at ¢ =
0; indeed, our importance function approaches the uniform
distribution between [0,1] when c goes to 0 (cf. Fig. 4).

We can see that the best results are achieved around
c = 0 for all the three types of features. When ¢ < —2 or
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Figure 5. Accuracies (%) for recognizing 3-Class emotions using the
weighted geodesic flow based model vs. the free parameter c¢ in the
importance function w(t).

¢ > 2, the performance drops almost monotonically. This
implies that the intermediate subspaces along the flow be-
tween the target and the interlocutor are actually effective in
modeling their mutual influence. It also explains the inferior
results of simply concatenating the features between the two
(cf. T + I in Tables 1 and 2). Whereas the geodesic flow
based modeling captures the advantages of the intermediate
subspaces, our importance function provides a finer-grained
way of integrating them and thus gives rise to additional
gain to the emotion recognition task.

6. Conclusions and Future Work

This work focused on modeling how an interaction
participant adapts his/her behavior to the multimodal be-
havior of the interlocutor, to express the internal emotions
in a dyadic interaction. Our framework parameterized the
interaction between two partners using weighted geodesic
flow (WGFK) in a Grassmann manifold. Specifically, the
interpersonal mutual influence is described by weighted
averaging the intermediate subspaces between the behavior
subspaces of an interaction dyad along the geodesic flow.
Experimental results in multimodal emotion recognition
tasks have shown the superiority of WGFK-based approach
over the baselines in modeling expressive and detailed in-
teraction structure.

The importance function in the WGFK-based frame-
work offers much capacity and flexibility for modeling the
complex dynamics of interaction structure. The symmetry
property of the importance function (Section 4.2) can be
even relaxed if the prior knowledge about which partner
plays a more dominant role in an interaction is applied.
In addition, adaptive learning of the importance function
over time could be further incorporated in the framework
as the interpersonal behavior influence evolves along the
interaction.
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