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An intelligent robot



Image credit: https://www.cityscapes-dataset.com/

Semantic segmentation of 
urban scenes

Assign each pixel a semantic label

An appealing application: self-driving



Triumphal approach: CNNs
convolutional neural networks

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.



Image credit: https://www.cityscapes-dataset.com/

To teach/train CNNs to 
segment images and videos

About 1.5 hrs to label one such image!

Cityscapes:
30k images captured from 50 cities
Only 5k are well labeled thus far



Labeling-free training data 
by simulation

Image credit: http://synthia-dataset.net/

http://synthia-dataset.net/


Simulation to real world: 
catastrophic performance drop
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Cause:  standard assumption in machine learning

Same underlying distribution for training and testing

Consequence: 

Poor cross-domain generalization

Brittle systems in dynamic and changing 
environment

The perils of 
mismatched domains
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Synthetic imagery → Real photos

The perils of 

mismatched domains

[Zhang et al., ICCV’17]



The perils of 

mismatched domains

[Jamal et al., CVPR’18]

Adapting face detector to a user’s album



The perils of 

mismatched domains

Attribute detection

Middle-level concepts
describing objects, faces, etc.

Shared by different categories

[Gan et al., CVPR’17]



The perils of 

mismatched domains

Personalization of  video summarizers
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(a) Input: Video & Query (c) Output: Summary(b) Algorithm: Sequential & Hierarchical Determinantal Point Process (SH-DPP)

Important & diverse shots à

Query-relevant, important, 
& diverse shots à

[Sharghi et al., ECCV’16, CVPR’17, ECCV’18]



The perils of 

mismatched domains

Webly supervised learning

[Gan et al., ECCV’16, CVPR’18]
[Ding et al., WACV’18]



Setup

Source domain (with labeled data)

Target domain (no labels for training)

Objective

Learn models to work well on target

Abstract form: unsupervised 
domain adaptation (DA)

Different distributions

?
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Existing methods
Correcting sampling bias

[Shimodaira, ’00]

[Huang et al., Bickel et al., ’07]

[Sugiyama et al., ’08]

[Sethy et al., ’06]

[Sethy et al., ’09]

Adjusting mismatched models

[Evgeniou and Pontil, ’05]

[Duan et al., ’09]

[Duan et al., Daumé III et al., Saenko et al., ’10]

[Kulis et al., Chen et al., ’11]
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Inferring 
domain-
invariant 
features

[Pan et al., ’09]

[Blitzer et al., ’06] [Gopalan et al., ’11]

[Chen et al., ’12][Daumé III, ’07]

[Argyriou et al, ’08] [Gong et al., ’12]

[Muandet et al., ’13]
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Let teacher model hint 
segmentation net (student)
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Input: An urban scene image
Algorithm: Logistic regression
Output: Label distributions



Input: An urban scene image
Algorithm: Super-pixel + Logistic regression
Output: Labels of some super-pixels

Road

Sidewalk

Let 2nd teacher model hint 
segmentation net (student)



min
⇥

L(Ys, bYs) + d(pt, pt(bYt))

bY

s : Source, t : Target

pt : Perturbation function

Curriculum domain 
adaptation for training CNNs
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[ICCV’17]

min
⇥

L(Ys, bYs) + d(pt, pt(bYt))
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Cityscapes: 
Train/val/test: 2993/503/1531 



GTA: 24,996 images from the video game



SYNTHIA: 9,400 images



Simulation to real world: 
catastrophic performance drop
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[Zhang et al., ICCV’17]



Recent progress
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Domain-invariant features
Importance sampling of data
Adapt background models
etc. 

Curriculum domain adaptation 
Style transfer, etc. 

Simulation to reality for segmentation, detection, 
Dynamics planning & control, etc.

 

Domain adaptation: key to 
use simulation “for real”

mailto:BoqingGong@gmail.com
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use simulation “for real”
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Domain adaptation → 
domain generalization
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Training data sampled from C related domains
Test data from both seen & 

unseen domains

!
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Simulation for 

domain generalization
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across Environments and Tasks
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Abstract

The ability to transfer in reinforcement learning is key towards building an agent of1

general artificial intelligence. In this paper, we consider the problem of learning to2

simultaneously transfer across both environments (ENV) and tasks, probably more3

importantly, by learning from only sparse (ENV, TASK) pairs out of all the possible4

combinations. We propose a novel compositional neural network architecture5

which depicts a meta rule for composing policies from the environment and task6

embeddings. Notably, one of the main challenges is that the embeddings have to7

be learned jointly with the meta rule. We further propose new training methods8

to disentangle the embeddings, making them both distinctive signatures of the9

environments and tasks and effective building blocks for composing the policies.10

Experiments on GRIDWORLD and THOR, of which the agent takes as input an11

egocentric view, show that our approach gives rise to high success rates on all the12

(ENV, TASK) pairs after learning from only 40% of them.13

1 Introduction14

Remarkable progress has been made in reinforcement learning in the last few years [16, 20, 26]. In15

these settings, an agent learns to discover its best policy of actions to accomplish a task, by interacting16

with the environment. However, the skills the agent learns are often tied for the specific pair of the17

environment and the task. Consequently, when the environment change even slightly, the agent’s18

performance deteriorates drastically [11, 28]. Thus, being able to swiftly adapt to new environments19

and transfer skills to new tasks is crucial for the agents to perform in real-world settings.20

How can we achieve swift adaptation and transfer? In this paper, we consider several progressively21

difficult settings. In the first setting, the agent needs to adapt and transfer to a new pair of environment22

and task and the agent has been exposed to the environment and the task (but not at the same23

time). Our goal is to rely on as few as possible the seen pairs (i.e., as sparse as possible a subset of24

combinations out of total possible combinations) to train the agent.25

In the second setting, the agent needs to adapt and transfer either across environments or across26

tasks. For instance, a home service robot needs to adapt from one home to another one but essentially27

accomplish the same sets of tasks, or the robot learns new tasks in the same home. And in the third28

setting, the agent has encountered neither the environment nor the task. Intuitively, the second and29

the third setting are much more challenging than the first one and appear to be intractable. Thus, the30

agent is allowed to have a very limited amount of learning, for instance, one demonstration, in order31

to transfer knowledge from its prior learning.32

Figure 1 schematically illustrates these settings. Several existing approaches have been proposed33

to address some of those settings [1–3, 14, 17, 23, 24]; for a detail discussion, see related work in34

section 2. A common strategy behind these works is to jointly learn through multi-task (reinforce-35

ment) learning [9, 18, 24]. Despite many progresses, however, adaptation and transfer remain as a36

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.

[NIPS’18, Spotlight]
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What to simulate?

Rare events

mailto:BoqingGong@gmail.com


 

What to simulate?

Active Simulation

Simulator Reality

More data, better model

Actively tune simulator

[Proof-of-concept paper submitted]

mailto:BoqingGong@gmail.com


Thank you! 


