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Data-centric era

Experiments, observations, and
simulations in science

Internet of things
Sensors everywhere

140 billion images, 12M hourly
300 hour new video every minute
200B tweets yearly, 500M daily
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Google predicted flu outbreak two weeks before 
CDC, and now they collaborate.

Twitter correctly predicted 2012 presidential 
election.

Waze GPS provides real-time traffic information.

Cytolon matches cancer patients to cord-blood 
donors in real-time.

Great sources of discovery 
and knowledge
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4

National 
Academies Report

Dealing with highly distributed data

Coping with sampling biases and 
heterogeneity 

Exploiting parallel and distributed 
architectures

Data visualization, integration, 
validation, security, sharing, etc.

… …

Challenges 



“(training) Data may have been collected 
according to a certain criterion …, but (testing) 
the inferences and decisions may refer to a 
different sampling criterion.”

             

Sampling bias & heterogeneity 

National 
Academies Report
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Self-driving car: a case study

6



Pedestrian detection and avoidance system

Self-driving car: a case study

7

Sampling bias ➔
Performance significantly 
degrades [Dollár et al.’09]



Cause:  standard assumption in machine learning

Same underlying distribution for training and testing

The perils of 
mismatched domains
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Systems often deployed to new environment, not 
lab reproducible

Expensive to collect training data from each type 
of target environment

Systems naturally degrade; environment 
dynamically evolves

This is a realistic obstacle 
for autonomous systems
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Mismatches are common to 
many areas

Biology: 
different 
subjects
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Setup

Source domain (with labeled data)

Target domain (no labels for training)

Objective

Learn models to work well on target

Abstract form: unsupervised 
domain adaptation (DA)

Different distributions

?
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Background on DA

2000s Machine learning, NLP:
DA, covariate shift, sampling bias

1990s Speech: speaker adaptation

1970s Statistics & econometrics: sampling bias

2009, 10 Computer vision: classification
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Background - brief review
Correcting sampling bias

[Shimodaira, ’00]

[Huang et al., Bickel et al., ’07]

[Sugiyama et al., ’08]

[Sethy et al., ’06]

[Sethy et al., ’09]
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Background - brief review

Adjusting mismatched models

[Evgeniou and Pontil, ’05]

[Duan et al., ’09]

[Duan et al., Daumé III et al., Saenko et al., ’10]

[Kulis et al., Chen et al., ’11]
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Background - brief review

Inferring 
domain-
invariant 
features

[Pan et al., ’09]

[Blitzer et al., ’06] [Gopalan et al., ’11]

[Chen et al., ’12][Daumé III, ’07]

[Argyriou et al, ’08] [Gong et al., ’12]

[Muandet et al., ’13]
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x 7! z, s.t.

PS(z, y) ⇡ PT (z, y)
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Background - quick review
Correcting sampling bias

[Shimodaira, ’00]

[Huang et al., Bickel et al., ’07]

[Sugiyama et al., ’08]

[Sethy et al., ’06]

[Sethy et al., ’09]

Adjusting mismatched models

[Evgeniou and Pontil, ’05]

[Duan et al., ’09]

[Duan et al., Daumé III et al., Saenko et al., ’10]

[Kulis et al., Chen et al., ’11]
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Inferring 
domain-
invariant 
features

[Pan et al., ’09]

[Blitzer et al., ’06] [Gopalan et al., ’11]

[Chen et al., ’12][Daumé III, ’07]

[Argyriou et al, ’08] [Gong et al., ’12]

[Muandet et al., ’13]
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GFK: inferring a domain-
invariant feature space

1. Exploit subspace structure in data

2. Model domain shift with geodesic flow

3. Derive a domain-invariant kernel  

4. Classify target data in the kernel space

2
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Source Target
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[Gong et al., CVPR’12]
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“to reduce source-target discrepancy”

Latent domains                      [Gong et al., NIPS’13]

Key to domain adaptation
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Forced adaptation

Attempting to adapt all source instances, 
including “hard” ones

Implicit discrimination

Learning discrimination biased to source,           
rather than optimized w.r.t. target

Snags in previous 
methods
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“to reduce source-target domain discrepancy”

Geodesic flow kernel (GFK)         [Gong et al., CVPR’12]

What is a source domain? 

Is it always fixed?

Can we reshape it?

Key to domain adaptation
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In computer vision:

Factors? Pose
Lighting

Occlusion

Fore/Background

What constitutes a domain?

In speech and NLP:

Speakers

Languages

Article topics

…other factors
Many factors 

overlap & interact
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Some questions revolving 
around “domain”

?

?
?

Adapt-abilities 
of different domains
[Gong et al., IJCV’14, CVPR’12]

What is a domain? 
Reshaping data according to 
domains from which they come?
[Gong et al., NIPS’13]

P1 P2 PK…

Datasets

…
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Forced adaptation from a prefixed source domain

➔ Select the best instances for adaptation

Implicit discrimination

➔ Approximate discriminative loss on target

Our key insights
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Landmarks are labeled source 
instances distributed similarly to 
the target domain.

Selecting most adaptable 
source instances

Source

Target
[Gong et al., ICML’13]
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Landmarks are labeled source 
instances distributed similarly to 
the target domain.

Identifying landmarks: Source

Target
[Gong et al., ICML’13]

Selecting most adaptable 
source instances

?
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Kernel embedding of 
distributions

µ[P ] , E
x

[�(x)]

µ maps distribution P to Reproducing Kernel Hilbert Space

µ is injective if 𝜙(·) is characteristic

H

[Müller’97,Gretton et al.’07,Sriperumbudur et al.’10]

P(x)
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Kernel embedding of 
distributions

µ[P ] , E
x

[�(x)]

H

Empirical kernel embedding:  

µ̂[P ] =
1

n

nX

i=1

�(xi), xi ⇠ P

P(x)
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Integer programming 

where

Identifying landmarks by 
matching kernel embeddings

min
{↵m}

�����
1P
i ↵i

MX

m=1

↵m�(xm)� 1

N

NX

n=1

�(xn)

�����

2

H

↵m =

⇢
1 if xm is a landmark wrt target
0 else

m = 1, 2, · · · ,M

landmark
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Convex relaxation

Solving by relaxation

min
{↵m}
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Gaussian kernels

Plus: universal (characteristic)                         
Minus: how to choose the bandwidth?

Our solution: bandwidth---granularity

Examining distributions at multiple granularities 
Multiple bandwidths, multiple sets of landmarks

How to choose the kernel 
functions?



Class balance constraint

Recovering      from 

(See [Gong et al., ICML’13, IJCV’14] for details)

Other details



What do landmarks look like?

Headphone Mug
target

Target
Source

Unselected

Landm
arks
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Landmark based domain 
adaptation

Identifying 
landmarks

New source-target 
adaptation task

Adaptation 
by GFK
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Four vision datasets/domains on 
visual object recognition

[Griffin et al. ’07, Saenko et al. 10’]

Four types of product reviews on 
sentiment analysis

Books, DVD, electronics, kitchen 
appliances [Biltzer et al. ’07]

Experimental study

The Office



Comparison results: 
object recognition
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Comparison results: 
object recognition
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Comparison results: 
sentiment analysis
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Landmarks

Summary - Landmarks

• Labeled source instances, 
distributed similarly to target 

• Better approximation of 
discriminative loss of target 

• Automatically identifying 
landmarks 

• Benefiting other adaptation 
methods

[Gong et al., ICML’13]
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“to reduce source-target domain discrepancy”

Geodesic flow kernel (GFK)         [Gong et al., CVPR’12]

What is a source domain? 

Landmarks: reshaped target-oriented source

What if no a priori knowledge about target?

Key to domain adaptation
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Amazon images from [Saenko et al.’10].

What constitutes a domain?



Domain I Domain II

What constitutes a domain?



I. Maximum distinctiveness: 

Identifying distinct domains maximally 
different in distribution from each other

II. Maximum learnability

Being able to derive strong discriminative 
models from the identified domains

Two axiomatic properties 
for latent domains

[Gong et al., NIPS’13]
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Domains maximally different in distribution 
from each other

I. Maximum distinctiveness

max

{zmk}

X

k 6=k0

ˆd(Pk, Pk0
; {zmk})

zmk =

⇢
1 if xm 2 the k-th domain

0 else

m = 1, 2, · · · ,M, k = 1, 2, · · · ,K
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Able to learn strong classifiers from domains

Within-domain cross-validation

-Determining the number of domains K

II. Maximum learnability

Accuracy(K) =
KX

k=1

Mk

M
Accuracyk
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Amazon images from [Saenko et al.’10].

Hard to manually define 
discrete domains
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Domain I Domain II

Our “reshaped” domains
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Adapting from discovered domains > from datasets 



Many factors 
overlap & interact

What constitutes 
domains?

Summary - latent domains

• Dataset ≠ domain 

• Suboptimal to use DA methods 
for cross-dataset problem 

• Discovering latent domains:  

• maximum distinctiveness 

• maximum learnability
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“to reduce source-target discrepancy”
Geodesic flow kernel (GFK)         [Gong et al., CVPR’12]

What is a source domain? 

Landmarks: reshaped target-oriented source

Discovering latent domains without target a priori
 

“to define domains / to reshape data well”

Key to domain adaptation
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“to reduce source-target discrepancy”
Geodesic flow kernel (GFK)         [Gong et al., CVPR’12]

What is a source domain? 

Landmarks: reshaped target-oriented source

Discovering latent domains without target a priori
 

“to define domains / to reshape data well”

49

Thanks!


