Reshaping Datasets for Unsupervised Domain Adaptation

Joint work with Kristen Grauman and Fei Sha

Data-centric era

Experiments, observations, and simulations in science

Internet of things Sensors everywhere

140 billion images, *I2M hourly*300 hour new video every minute
200B tweets yearly, 500M daily

Great sources of discovery and knowledge

Google predicted flu outbreak two weeks before CDC, and now they collaborate.

correctly predicted 2012 presidential election.

waze GPS provides real-time traffic information.

cytolon matches cancer patients to cord-blood donors in real-time.

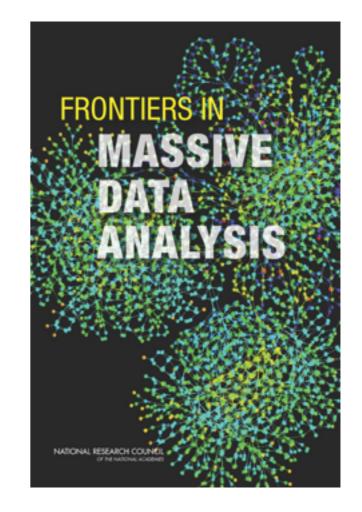
Challenges

Dealing with highly distributed data

Coping with sampling biases and heterogeneity

Exploiting parallel and distributed architectures

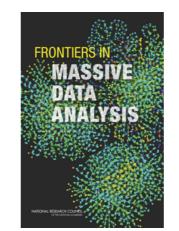
Data visualization, integration, validation, security, sharing, etc.



National Academies Report

Sampling bias & heterogeneity

"(training) Data may have been collected according to a certain criterion ..., but (testing) the inferences and decisions may refer to a different sampling criterion."



National Academies Report

Self-driving car: a case study

Self-driving car: a case study

Pedestrian detection and avoidance system

Sampling bias → Performance significantly degrades [Dollár et al.'09]

The perils of mismatched domains

Cause: standard assumption in machine learning Same underlying distribution for training and testing

This is a realistic obstacle for autonomous systems

Systems often deployed to new environment, not lab reproducible

Expensive to collect training data from each type of target environment

Systems naturally degrade; environment dynamically evolves

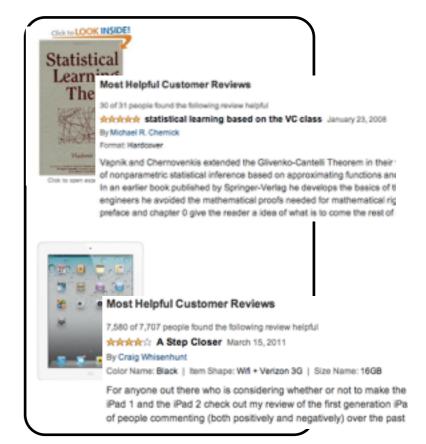
Mismatches are common to many areas

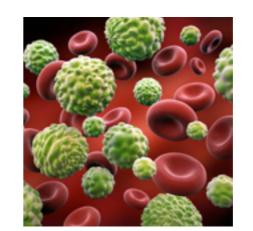
The New York Times

<text><text><text><text><text><text><text><text>

 The immediate sause of steah was a meeting prote particle to party in the transpect file numeric forms particulated an hoar before a Both has true presentations: Steakers con (beca, and Materia)

Science





Biology: different subjects

Abstract form: unsupervised domain adaptation (DA)

Setup

Source domain (with labeled data)

$$D_{\mathcal{S}} = \{(x_m, y_m)\}_{m=1}^{\mathsf{M}} \sim P_{\mathcal{S}}(X, Y)$$

Target domain (no labels for training)
$$D_{\mathcal{T}} = \{(x_n, ?)\}_{n=1}^{\mathsf{N}} \sim P_{\mathcal{T}}(X, Y)$$

Different distributions

Objective

Learn models to work well on target

Background on DA

2009, 10 Computer vision: classification Machine learning, NLP: 2000s DA, covariate shift, sampling bias **1990s** Speech: speaker adaptation 1970s Statistics & econometrics: sampling bias

Background - brief review

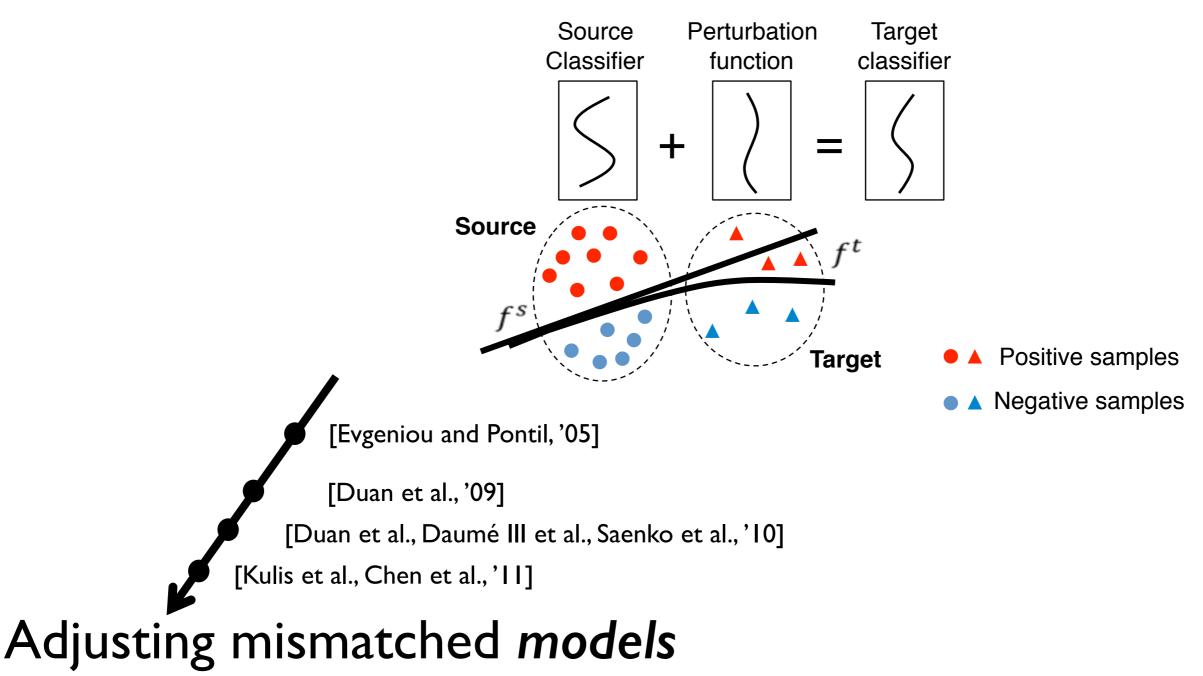
Correcting sampling bias

[Sethy et al., '09] [Sugiyama et al., '08] [Huang et al., Bickel et al., '07] [Sethy et al., '06]

[Shimodaira, '00]

Re-weight source instances $\mathbb{E}_{\mathcal{T}}[h(\mathbf{x}) \neq y] \approx \mathbb{E}_{\mathcal{S}} \omega(\mathbf{x}) \ [h(\mathbf{x}) \neq y]$ $\omega(\mathbf{x}) : \text{instance weight}$

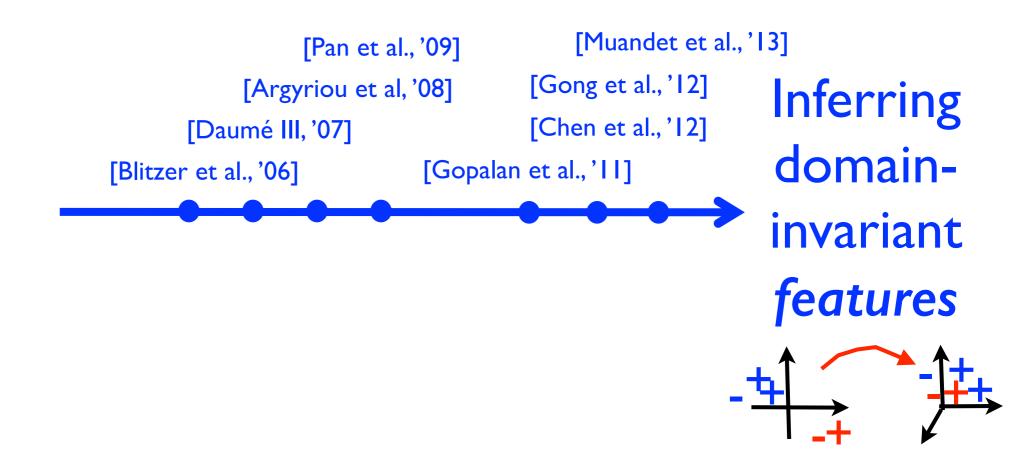
Background - brief review



Background - brief review

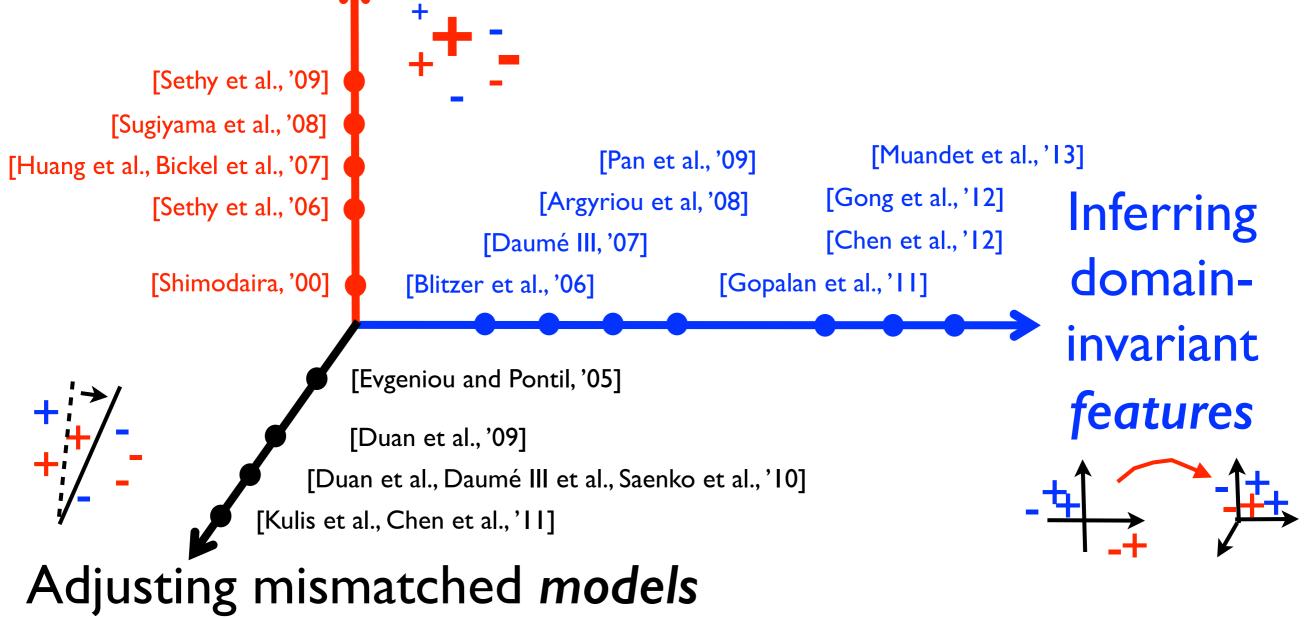
$$\mathbf{x} \mapsto \mathbf{z}, \quad \text{s.t.}$$

 $P_{\mathcal{S}}(z, y) \approx P_{\mathcal{T}}(z, y)$

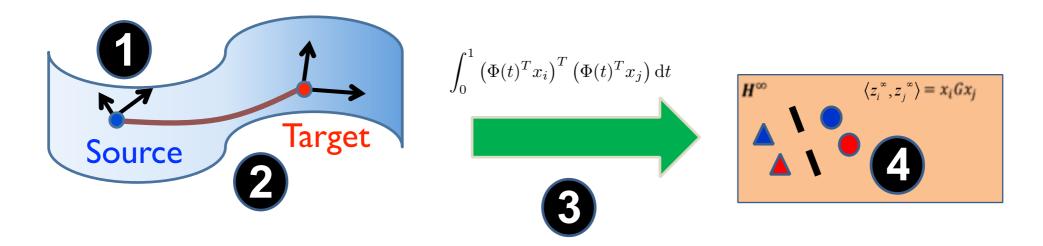


Background - quick review

Correcting sampling bias



GFK: inferring a domaininvariant feature space



- I. Exploit subspace structure in data
- 2. Model domain shift with geodesic flow
- 3. Derive a domain-invariant kernel
- 4. Classify target data in the kernel space

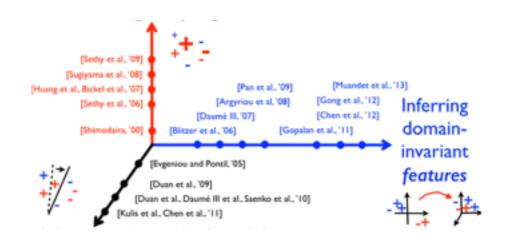
[Gong et al., CVPR'12]

Key to domain adaptation

"to reduce source-target discrepancy"

Snags in previous methods

Forced adaptation



Attempting to adapt all source instances, including "hard" ones

Implicit discrimination

Learning discrimination biased to source, rather than optimized w.r.t. target

Key to domain adaptation

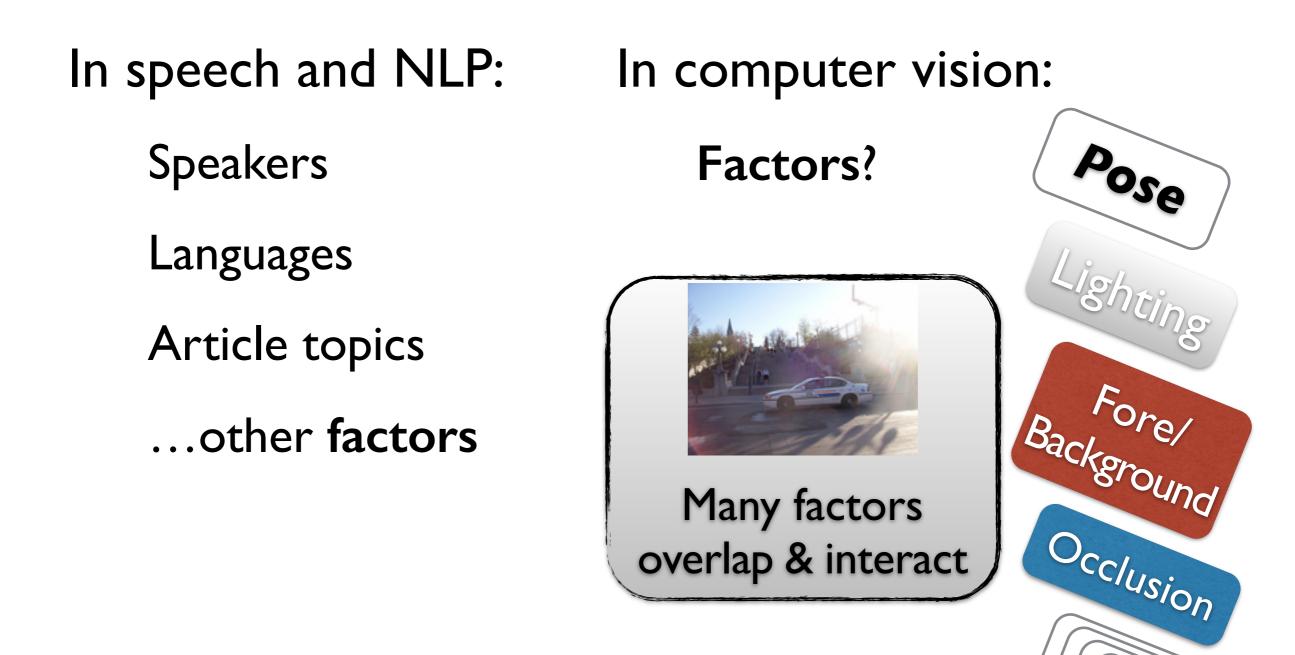
"to reduce source-target domain discrepancy"

What is a source domain?

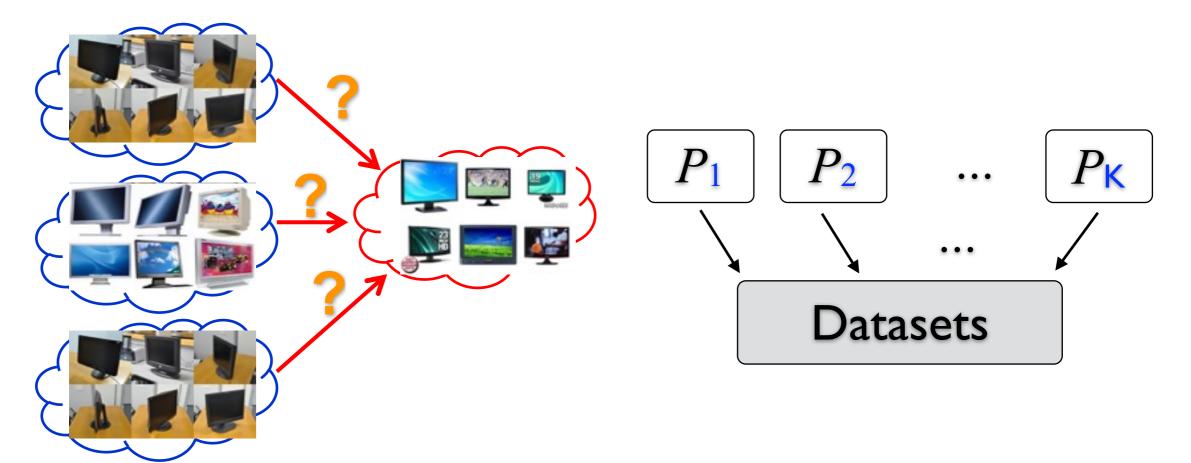
Is it always fixed?

Can we reshape it?

What constitutes a domain?



Some questions revolving around "domain"



Adapt-abilities of different domains [Gong et al., IJCV'14, CVPR'12] What is a domain? Reshaping data according to domains from which they come? [Gong et al., NIPS'13]

Our key insights

Forced adaptation from a prefixed source domain

→ Select the best instances for adaptation

Implicit discrimination

→ Approximate discriminative loss on target

Selecting most adaptable source instances

Landmarks are labeled source instances distributed similarly to the target domain.

Source

[Gong et al., ICML'13]

Selecting most adaptable source instances

25

Landmarks are labeled source instances distributed similarly to the target domain.

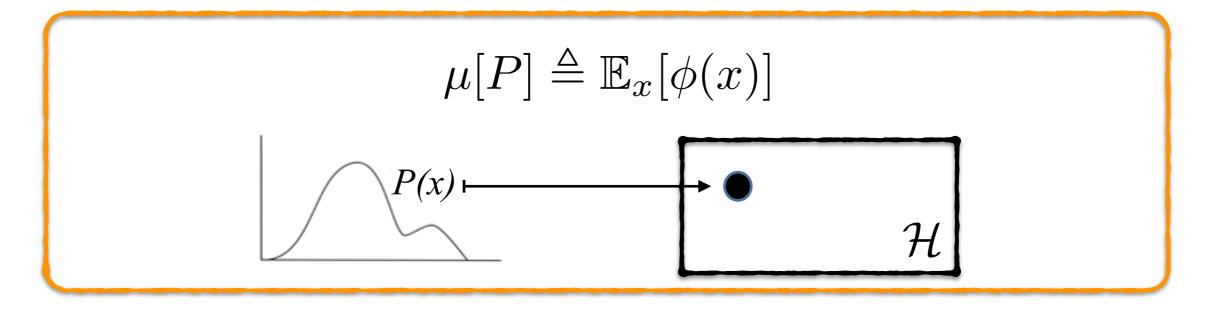
Identifying landmarks:

 $P_{\mathcal{L}}(\text{landmarks}) \approx P_{\mathcal{T}}(\text{target})$ $\min_{\text{landmarks}} d(P_{\mathcal{L}}, P_{\mathcal{T}})$

[Gong et al., ICML'13]

Source

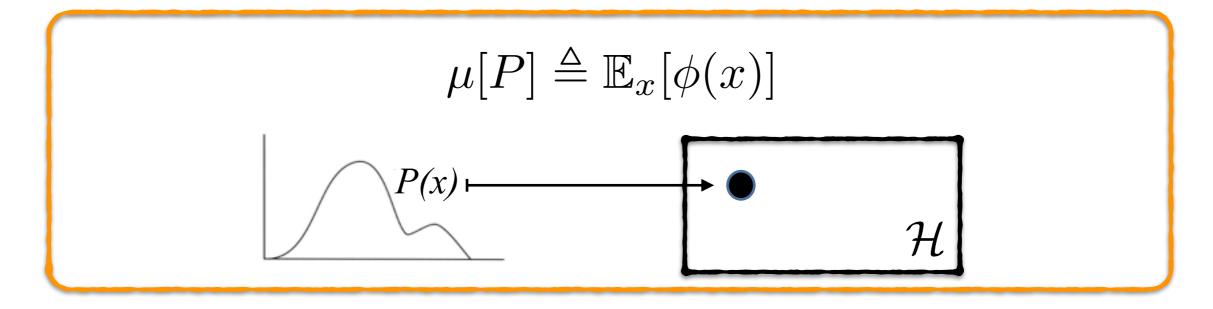
Kernel embedding of distributions



 μ maps distribution P to Reproducing Kernel Hilbert Space μ is injective if $\phi(\cdot)$ is characteristic

[Müller'97, Gretton et al.'07, Sriperumbudur et al.'10]

Kernel embedding of distributions



Empirical kernel embedding:

$$\hat{\mu}[P] = \frac{1}{\mathsf{n}} \sum_{i=1}^{\mathsf{n}} \phi(x_i), \quad x_i \sim P$$

Identifying landmarks by matching kernel embeddings

Integer programming

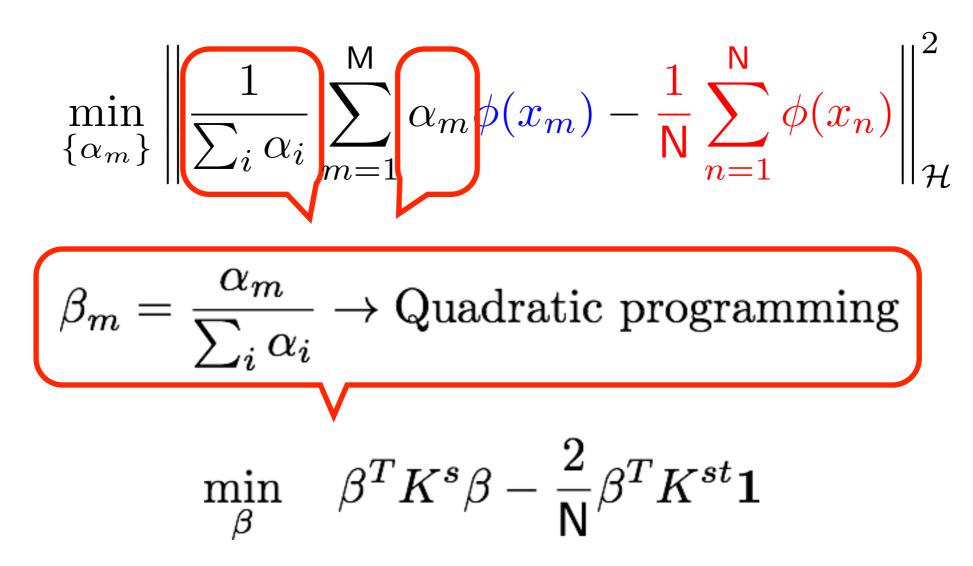
$$\min_{\{\alpha_m\}} \left\| \frac{1}{\sum_i \alpha_i} \sum_{m=1}^{\mathsf{M}} \alpha_m \phi(x_m) - \frac{1}{\mathsf{N}} \sum_{n=1}^{\mathsf{N}} \phi(x_n) \right\|_{\mathcal{H}}^2$$

where

 $\alpha_m = \begin{cases} 1 & \text{if } x_m \text{ is a landmark wrt target} \\ 0 & \text{else} \end{cases}$ $m = 1, 2, \cdots, \mathsf{M}$

Solving by relaxation

Convex relaxation



How to choose the kernel functions?

$$\min_{\beta} \quad \beta^T K^s \beta - \frac{2}{\mathsf{N}} \beta^T K^{st} \mathbf{1}$$

Gaussian kernels

Plus: universal (characteristic) Minus: how to choose the bandwidth?

Our solution: bandwidth---granularity

Examining distributions at multiple granularities Multiple bandwidths, multiple sets of landmarks

Other details

Class balance constraint Recovering α_m^{\star} from $\beta_m^{\star} (= \frac{\alpha_m}{\sum_i \alpha_i})$

(See [Gong et al., ICML'13, IJCV'14] for details)

What do landmarks look like?

Landmark based domain adaptation

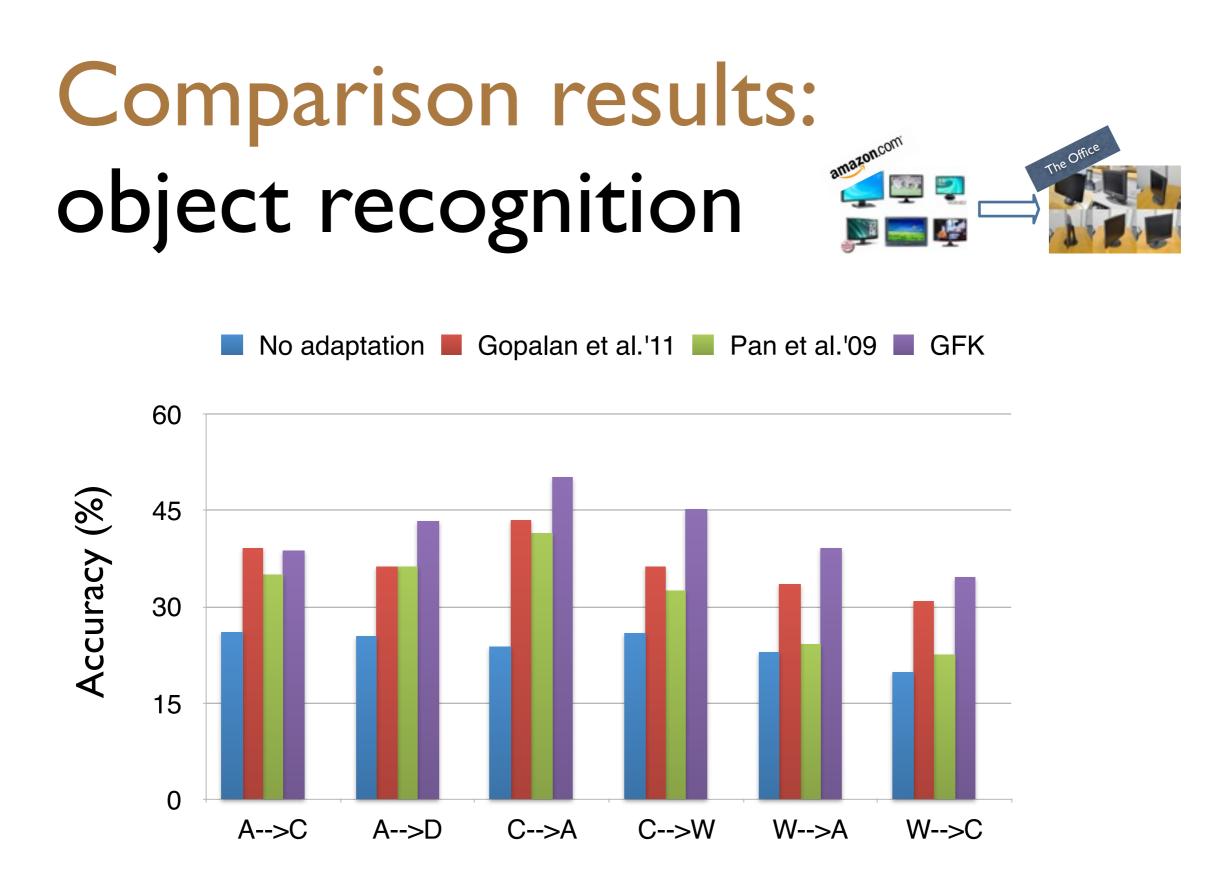
Experimental study

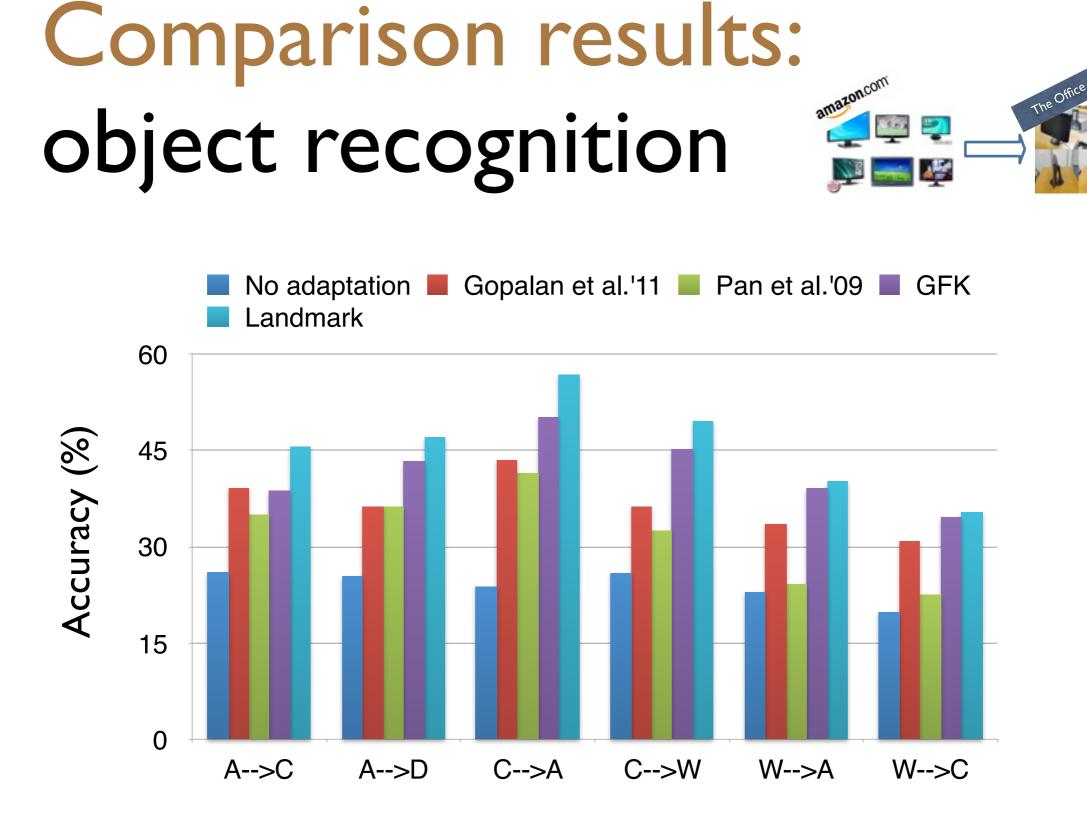
Four vision datasets/domains on visual object recognition

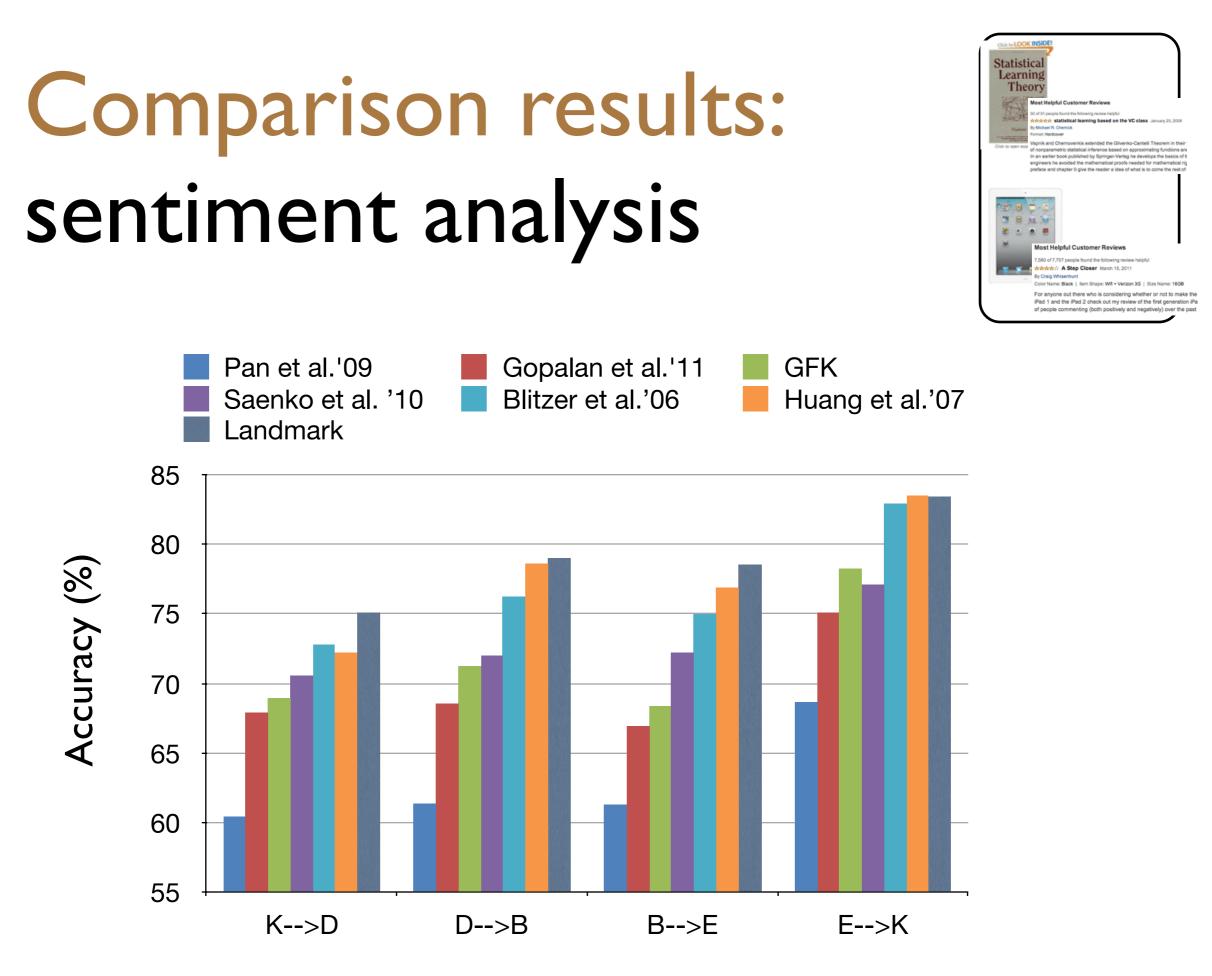
[Griffin et al. '07, Saenko et al. 10']

Four types of product reviews on sentiment analysis

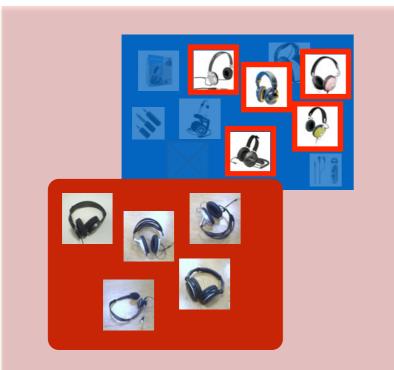
Books, DVD, electronics, kitchen appliances [Biltzer et al. '07]







Summary - Landmarks



Landmarks [Gong et al., ICML'13]

- Labeled source instances, distributed similarly to target
- Better approximation of discriminative loss of target
- Automatically identifying landmarks
- Benefiting other adaptation methods

Key to domain adaptation

"to reduce source-target domain discrepancy"

What is a source domain?

Landmarks: reshaped target-oriented source

What if no a priori knowledge about target?

What constitutes a domain?

Amazon images from [Saenko et al.'10].

What constitutes a domain?



Two axiomatic properties for latent domains

I. Maximum distinctiveness:

Identifying distinct domains maximally different in distribution from each other

II. Maximum learnability

Being able to derive strong discriminative models from the identified domains

[Gong et al., NIPS'13]

I. Maximum distinctiveness

Domains maximally different in distribution from each other

$$\max_{\{z_{mk}\}} \sum_{k \neq k'} \hat{d}(P_k, P_{k'}; \{z_{mk}\})$$

$$z_{mk} = \begin{cases} 1 & \text{if } x_m \in \text{the } k\text{-th domain} \\ 0 & \text{else} \end{cases}$$
$$m = 1, 2, \cdots, \mathsf{M}, \quad k = 1, 2, \cdots, \mathsf{K}$$

II. Maximum learnability

Able to learn strong classifiers from domains

Within-domain cross-validation

Accuracy(
$$\mathsf{K}$$
) = $\sum_{k=1}^{\mathsf{K}} \frac{\mathsf{M}_k}{\mathsf{M}} \operatorname{Accuracy}_k$

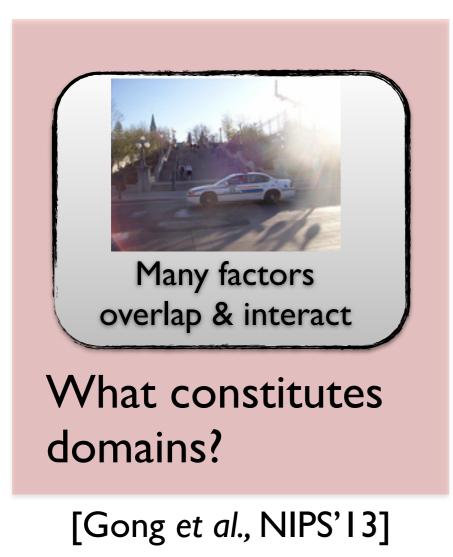
-Determining the number of domains K

Hard to manually define discrete domains

Our "reshaped" domains

Adapting from discovered domains > from datasets

Summary - latent domains



- Dataset ≠ domain
- Suboptimal to use DA methods for cross-dataset problem
- Discovering latent domains:
 - maximum distinctiveness
 - maximum learnability

Key to domain adaptation

"to reduce source-target discrepancy"

What is a source domain?

Landmarks: reshaped target-oriented source

Discovering latent domains without target a priori

"to define domains / to reshape data well"

"to reduce source-target discrepancy"

What is a source domain?

Landmarks: reshaped target-oriented source

Discovering latent domains without target a priori

"to define domains / to reshape data well"