
Multiple Shades of Dropout
for Discriminative and Generative

Deep Neural Networks

Boqing Gong
Tencent AI Lab, Seattle

BoqingGo@outlook.com

Research overview

Computer
vision

Machine
learning

2D/3D object recognition
Video summarization
Human activity recognition
Image tagging
Semantic segmentation
Face detection
Visual question answering

Domain adaptation & kernel methods
Multi-task & Transfer learning

zero-shot learning
Deep learning

Probabilistic models

Object
Recognition

0

5

10

15

20

25

30

35

40

LEAR-XRCE

U. of Amsterdam

XRCE/INRIA
Oxford ISI

SuperVision

Er
ro

r

ImageNet 1K Competition (Fall 2012)

Deep CNN
Univ. Toronto team

5

ImageNet 1K Competition (Fall 2013)

2012: The AlexNet

2013: VGGNet

2014: GoogLeNet

2015: ResNet

2016: Inception ResNet V2

Convolutional Deep Neural Network (DNN)

ConvNet diagram from Torch Tutorial

http://torch.cogbits.com/doc/tutorials_supervised/

An artificial neuron: perceptron

• Introduced by Rosenblatt in 1958
• The basic building block for almost all DNNs

Image credit: www.hiit.fi/u/ahonkela/dippa/node41.html

y = '(
nX

i=1

wixi + b)

= '(wTx+ b)

'(·) : activation function

Feedforward DNN: stacks of the perceprons

Learning the weights of DNNs

⇥? argmin
⇥

E(x,y)⇠PXY
[net(x;⇥) 6= y]

⇥̂ argmin
⇥

1

n

nX

i=1

[net(xi;⇥) 6= yi]

⇥̂! ⇥? given many training data (xi, yi), i = 1, 2, · · · , n

Learning the weights of DNNs

⇥? argmin
⇥

E(x,y)⇠PXY
[net(x;⇥) 6= y]

⇥̂ argmin
⇥

1

n

nX

i=1

[net(xi;⇥) 6= yi]

⇥̂! ⇥? given many training data (xi, yi), i = 1, 2, · · · , n

Pros and cons

Very flexible

Easy to use

Easy to configure

Easy to train
with off-shelf tools

Pros and cons

Very flexible Very flexible
perhaps too much

Easy to use Hard to understand

Easy to configure Hard to configure

Easy to train
with off-shelf tools

Hard to train
(overfitting, not robust)

Dropout

• Set a neuron to 0 with p=0.5
• Enforce survived neurons to learn; reduce co-adaptation

Image credit: https://github.com/PetarV-/TikZ/tree/master/Dropout

⇥? argmin
⇥

E(x,y)⇠PXY
[net(x;⇥) 6= y]

⇥̂ argmin
⇥

1

n

nX

i=1

[net(xi;⇥) 6= yi]

⇥̂! ⇥? given many training data (xi, yi), i = 1, 2, · · · , n[Srivastava et al.; JMLR’14]

Multinomial dropout

• Let neurons compete with each other
• Dropout rates follow a multinomial distribution

Image credit: https://github.com/PetarV-/TikZ/tree/master/Dropout

[Li, Gong, Yang; NIPS’16]

Multinomial dropout

• Let neurons compete with each other
• Dropout rates follow a multinomial distribution

Theorem 1. Let L(w) be the expected risk of w defined in (1). Assume ED̂[∥x ◦ ϵ∥22] ≤ B2 and
ℓ(z, y) is G-Lipschitz continuous. For any ∥w∗∥2 ≤ r, by appropriately choosing η, we can have

E[L(ŵn) +RD,M(ŵn)] ≤ L(w∗) +RD,M(w∗) +
GBr√

n

where E[·] is taking expectation over the randomness in (xt, yt, ϵt), t = 1, . . . , n.

Remark: In the above theorem, we can choosew∗ to be the best model that minimizes the expected
risk in (1). Since RD,M (w) ≥ 0, the upper bound in the theorem above is also the upper bound of
the risk of ŵn, i.e., L(ŵn), in expectation. The proof of the above theorem follows the standard
analysis of stochastic gradient descent. The detailed proof of theorem is included in the appendix.

4.1 Distribution Dependent Dropout

Next, we consider the sampling dependent factors in the risk bounds. From Theorem 1, we can see
that there are two terms that depend on the sampling probabilities, i.e., B2 - the upper bound of
ED̂[∥x ◦ ϵ∥22], and RD,M(w∗) − RD,M(ŵn) ≤ RD,M(w∗). We note that the second term also
depends on w∗ and ŵn, which is more difficult to optimize. We first try to minimize ED̂[∥x ◦ ϵ∥22]
and present the discussion on minimizing RD,M(w∗) later. From Theorem 1, we can see that
minimizing ED̂[∥x ◦ ϵ∥22] would lead to not only a smaller risk (given the same number of total
examples, smaller ED̂[∥x ◦ ϵ∥22] gives a smaller risk bound) but also a faster convergence (with the
same number of iterations, smaller ED̂[∥x ◦ ϵ∥22] gives a smaller optimization error).
Due to the limited space, the proofs of Proposition 2, 3, 4 are included in supplement. The following
proposition simplifies the expectation ED̂[∥x ◦ ϵ∥22].
Proposition 2. Let ϵ follow the distributionM defined in Definition 1. Then

ED̂[∥x ◦ ϵ∥22] =
1

k

d∑

i=1

1

pi
ED[x

2
i] +

k − 1

k

d∑

i=1

ED[x
2
i] (7)

Given the expression of ED̂[∥x ◦ ϵ∥22] in Proposition 2, we can minimize it over p, leading to the
following result.
Proposition 3. The solution to p∗ = argminp≥0,p⊤1=1ED̂[∥x ◦ ϵ∥22] is given by

p∗i =

√
ED[x2

i]
∑d

j=1

√
ED[x2

j]
, i = 1, . . . , d (8)

Next, we examine RD,M(w∗). Since direct manipulation on RD,M(w∗) is difficult, we try to
minimize the second order Taylor expansion R̂D,M(w∗) for logistic loss. The following theorem
establishes an upper bound of R̂D,M(w∗).

Proposition 4. Let ϵ follow the distribution M defined in Definition 1. We have R̂D,M(w∗) ≤
1
8k∥w∗∥22

(∑d
i=1

ED[x2

i]
pi

− ED[∥x∥22]
)

Remark: By minimizing the relaxed upper bound in Proposition 4, we obtain the same sampling
probabilities as in (8). We note that a tighter upper bound can be established, however, which will
yield sampling probabilities dependent on the unknownw∗.
In summary, using the probabilities in (8), we can reduce both ED̂[∥x ◦ ϵ∥22] and RD,M(w∗) in the
risk bound, leading to a faster convergence and a smaller generalization error. In practice, we can
use empirical second-order statistics to compute the probabilities, i.e.,

pi =

√
1
n

∑n
j=1[[xj]2i]

∑d
i′=1

√
1
n

∑n
j=1[[xj]2i′]

(9)

where [xj]i denotes the i-th feature of the j-th example, which gives us a data-dependent dropout.
We state it formally in the following definition.

5

[Li, Gong, Yang; NIPS’16]

Data-dependent multinomial dropout

• Let neurons compete with each other
• Dropout rates follow a multinomial distribution

• Neurons of higher “variance” --- larger weights

Theorem 1. Let L(w) be the expected risk of w defined in (1). Assume ED̂[∥x ◦ ϵ∥22] ≤ B2 and
ℓ(z, y) is G-Lipschitz continuous. For any ∥w∗∥2 ≤ r, by appropriately choosing η, we can have

E[L(ŵn) +RD,M(ŵn)] ≤ L(w∗) +RD,M(w∗) +
GBr√

n

where E[·] is taking expectation over the randomness in (xt, yt, ϵt), t = 1, . . . , n.

Remark: In the above theorem, we can choosew∗ to be the best model that minimizes the expected
risk in (1). Since RD,M (w) ≥ 0, the upper bound in the theorem above is also the upper bound of
the risk of ŵn, i.e., L(ŵn), in expectation. The proof of the above theorem follows the standard
analysis of stochastic gradient descent. The detailed proof of theorem is included in the appendix.

4.1 Distribution Dependent Dropout

Next, we consider the sampling dependent factors in the risk bounds. From Theorem 1, we can see
that there are two terms that depend on the sampling probabilities, i.e., B2 - the upper bound of
ED̂[∥x ◦ ϵ∥22], and RD,M(w∗) − RD,M(ŵn) ≤ RD,M(w∗). We note that the second term also
depends on w∗ and ŵn, which is more difficult to optimize. We first try to minimize ED̂[∥x ◦ ϵ∥22]
and present the discussion on minimizing RD,M(w∗) later. From Theorem 1, we can see that
minimizing ED̂[∥x ◦ ϵ∥22] would lead to not only a smaller risk (given the same number of total
examples, smaller ED̂[∥x ◦ ϵ∥22] gives a smaller risk bound) but also a faster convergence (with the
same number of iterations, smaller ED̂[∥x ◦ ϵ∥22] gives a smaller optimization error).
Due to the limited space, the proofs of Proposition 2, 3, 4 are included in supplement. The following
proposition simplifies the expectation ED̂[∥x ◦ ϵ∥22].
Proposition 2. Let ϵ follow the distributionM defined in Definition 1. Then

ED̂[∥x ◦ ϵ∥22] =
1

k

d∑

i=1

1

pi
ED[x

2
i] +

k − 1

k

d∑

i=1

ED[x
2
i] (7)

Given the expression of ED̂[∥x ◦ ϵ∥22] in Proposition 2, we can minimize it over p, leading to the
following result.
Proposition 3. The solution to p∗ = argminp≥0,p⊤1=1ED̂[∥x ◦ ϵ∥22] is given by

p∗i =

√
ED[x2

i]
∑d

j=1

√
ED[x2

j]
, i = 1, . . . , d (8)

Next, we examine RD,M(w∗). Since direct manipulation on RD,M(w∗) is difficult, we try to
minimize the second order Taylor expansion R̂D,M(w∗) for logistic loss. The following theorem
establishes an upper bound of R̂D,M(w∗).

Proposition 4. Let ϵ follow the distribution M defined in Definition 1. We have R̂D,M(w∗) ≤
1
8k∥w∗∥22

(∑d
i=1

ED[x2

i]
pi

− ED[∥x∥22]
)

Remark: By minimizing the relaxed upper bound in Proposition 4, we obtain the same sampling
probabilities as in (8). We note that a tighter upper bound can be established, however, which will
yield sampling probabilities dependent on the unknownw∗.
In summary, using the probabilities in (8), we can reduce both ED̂[∥x ◦ ϵ∥22] and RD,M(w∗) in the
risk bound, leading to a faster convergence and a smaller generalization error. In practice, we can
use empirical second-order statistics to compute the probabilities, i.e.,

pi =

√
1
n

∑n
j=1[[xj]2i]

∑d
i′=1

√
1
n

∑n
j=1[[xj]2i′]

(9)

where [xj]i denotes the i-th feature of the j-th example, which gives us a data-dependent dropout.
We state it formally in the following definition.

5

[Li, Gong, Yang; NIPS’16]

Multiple Shades of Dropout
for Discriminative and Generative

Deep Neural Networks

[1] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, 15(1), 1929-1958.
[2] Li, Z., Gong, B., & Yang, T. (2016). Improved dropout for shallow and deep
learning. In Advances in Neural Information Processing Systems (pp. 2523-2531).

Generative adversarial net

Autoregressive model

Generative DNNs

Image credit: https://skymind.ai/wiki/generative-adversarial-network-gan

Variational auto-encoder

GLOW

Generative adversarial net

Generative DNNs

Image credit: https://skymind.ai/wiki/generative-adversarial-network-gan

Lipschitz continuous
d
�
f(x0), f(x00)

�

d(x0,x00)
 1

Generative adversarial net (GAN)

Generative adversarial net (GAN)

x

[1] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, 15(1), 1929-1958.

[2] Li, Z., Gong, B., & Yang, T. (2016). Improved dropout for shallow and deep
learning. In Advances in Neural Information Processing Systems (pp. 2523-2531).

[3] Wei, X., Gong, B., Liu, Z., Lu, W., & Wang, L. (2018). Improving the Improved
Training of Wasserstein GANs: A Consistency Term and Its Dual Effect. International
Conference on Learning Representations.

Take-home message

Dropout
Independently drops some neurons in training
Effectively prevents network overfitting

Data-dependent multinomial dropout
Lets neurons compete with other
Attends more on neurons of larger “variance”
Yields provably better generalization bound

Dropout for (Wasserstein) GAN
Dropout twice per input à Lipschitz continuity

