Multiple Shades of Dropout for Discriminative and Generative Deep Neural Networks

Boqing Gong Tencent AI Lab, Seattle BoqingGo@outlook.com

Research overview

ComputerMachinevisionlearning

2D/3D object recognition Video summarization Human activity recognition Image tagging Semantic segmentation Face detection Visual question answering

Domain adaptation & kernel methods Multi-task & Transfer learning zero-shot learning Deep learning Probabilistic models

Object Recognition

ImageNet 1K Competition (Fall 2012)

ImageNet 1K Competition (Fall 2013)

2012: The AlexNet

2013: VGGNet

2014: GoogLeNet

Convolution Pooling Softmax Other

2015: **ResNet**

output size: 14

output size: 7

output size: 1

output size: 224

output tize: 112

output size: 56

output size: 28

2016: Inception ResNet V2

Convolutional **Deep Neural Network (DNN)**

ConvNet diagram from Torch Tutorial

An artificial neuron: perceptron

- Introduced by Rosenblatt in 1958
- The basic building block for almost all DNNs

Image credit: www.hiit.fi/u/ahonkela/dippa/node41.html

Feedforward DNN: stacks of the perceprons

Learning the weights of DNNs

$$\Theta^{\star} \leftarrow \arg\min_{\Theta} \quad \mathbb{E}_{(x,y)\sim P_{XY}}[\operatorname{NET}(x;\Theta) \neq y]$$

Learning the weights of DNNs

$$\Theta^{\star} \leftarrow \arg\min_{\Theta} \quad \mathbb{E}_{(x,y)\sim P_{XY}} [\operatorname{NET}(x;\Theta) \neq y]$$
$$\hat{\Theta} \leftarrow \arg\min_{\Theta} \quad \frac{1}{n} \sum_{i=1}^{n} [\operatorname{NET}(x_i;\Theta) \neq y_i]$$

 $\hat{\Theta} \to \Theta^*$ given many training data $(x_i, y_i), i = 1, 2, \cdots, n$

Pros and cons

Very flexible	
Easy to use	
Easy to configure	
Easy to train with off-shelf tools	

Pros and cons

Very flexible	Very flexible perhaps too much
Easy to use	Hard to understand
Easy to configure	Hard to configure
Easy to train with off-shelf tools	Hard to train (overfitting, not robust)

Dropout

$$\hat{\Theta} \leftarrow \arg\min_{\Theta} \quad \frac{1}{n} \sum_{i=1}^{n} [\operatorname{NET}(x_i; \Theta) \neq y_i]$$

• Set a neuron to 0 with p=0.5

[Srivastava et al.; JMLR'14]

• Enforce survived neurons to learn; reduce co-adaptation

Image credit: https://github.com/PetarV-/TikZ/tree/master/Dropout

Multinomial dropout

- Let neurons compete with each other [Li, Gong, Yang; NIPS'16]
- Dropout rates follow a multinomial distribution

Image credit: https://github.com/PetarV-/TikZ/tree/master/Dropout

Multinomial dropout

- Let neurons compete with each other [Li, Gong, Yang; NIPS'16]
- Dropout rates follow a multinomial distribution

Theorem 1. Let $\mathcal{L}(\mathbf{w})$ be the expected risk of \mathbf{w} defined in (1). Assume $\mathbb{E}_{\widehat{\mathcal{D}}}[\|\mathbf{x} \circ \boldsymbol{\epsilon}\|_2^2] \leq B^2$ and $\ell(z, y)$ is G-Lipschitz continuous. For any $\|\mathbf{w}_*\|_2 \leq r$, by appropriately choosing η , we can have

$$E[\mathcal{L}(\widehat{\mathbf{w}}_n) + R_{\mathcal{D},\mathcal{M}}(\widehat{\mathbf{w}}_n)] \le \mathcal{L}(\mathbf{w}_*) + R_{\mathcal{D},\mathcal{M}}(\mathbf{w}_*) + \frac{GBr}{\sqrt{n}}$$

where $E[\cdot]$ is taking expectation over the randomness in $(\mathbf{x}_t, y_t, \boldsymbol{\epsilon}_t), t = 1, ..., n$.

Data-dependent multinomial dropout

- Let neurons compete with each other [Li, Gong, Yang; NIPS'16]
- Dropout rates follow a multinomial distribution

$$p_{i} = \frac{\sqrt{\frac{1}{n} \sum_{j=1}^{n} [[\mathbf{x}_{j}]_{i}^{2}]}}{\sum_{i'=1}^{d} \sqrt{\frac{1}{n} \sum_{j=1}^{n} [[\mathbf{x}_{j}]_{i'}^{2}]}}$$

• Neurons of higher "variance" --- larger weights

Multiple Shades of Dropout for Discriminative and *Generative* Deep Neural Networks

[1] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. *The Journal of Machine Learning Research*, *15*(1), 1929-1958.

[2] Li, Z., Gong, B., & Yang, T. (2016). Improved dropout for shallow and deep learning. In *Advances in Neural Information Processing Systems* (pp. 2523-2531).

Generative DNNs

Image credit: https://skymind.ai/wiki/generative-adversarial-network-gan

Generative DNNs

Generative adversarial net

 $\frac{d(f(\boldsymbol{x'}), f(\boldsymbol{x''}))}{d(\boldsymbol{x'}, \boldsymbol{x''})}$ 1

Image credit: https://skymind.ai/wiki/generative-adversarial-network-gan

Generative adversarial net (GAN)

Generative adversarial net (GAN)

[1] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. *The Journal of Machine Learning Research*, *15*(1), 1929-1958.

[2] Li, Z., Gong, B., & Yang, T. (2016). Improved dropout for shallow and deep learning. In *Advances in Neural Information Processing Systems* (pp. 2523-2531).

[3] Wei, X., Gong, B., Liu, Z., Lu, W., & Wang, L. (2018). Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect. *International Conference on Learning Representations*.

Take-home message

Dropout

Independently drops some neurons in training Effectively prevents network overfitting

Data-dependent multinomial dropout

Lets neurons compete with other

Attends more on neurons of larger "variance"

Yields provably better generalization bound

Dropout for (Wasserstein) GAN

Dropout twice per input \rightarrow Lipschitz continuity