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[Laine & Aila, ICLR 2017]
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Result on CIFAR-10 and MNIST

[Ding et al., WACV’18]
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Results on Clothing1M

[Ding et al., WACV’18]
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Shape from dense views 
geometric problem

Shape from one view
semantic problem

[Snavely et al, CVPR ‘06] [Sinha et al, ICCV’93]
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Curriculum Learning

In principle one could argue that di�cult examples
can be more informative than easy examples. Here
the di�cult examples are probably not useful because
they confuse the learner rather than help it establish
the right location of the decision surface. This exper-
iment does not involve a curriculum strategy yet, but
it may help to understand why easier examples could
be useful, by avoiding to confuse the learner.

4.2. Introducing Gradually More Di�cult

Examples Speeds-up Online Training

We train a Perceptron from artificially generated data
where the target is y = sign(w0

xrelevant) and w is sam-
pled from a Normal(0,1). The training pairs are (x, y)
with x = (xrelevant, xirrelevant), i.e., some of the inputs
are irrelevant, not predictive of the target class. Rel-
evant inputs are sampled from a Uniform(0,1) distri-
bution. Irrelevant inputs can either be set to 0 or to
a Uniform(0,1). The number of irrelevant inputs that
is set to 0 varies randomly (uniformly) from example
to example, and can be used to sort examples from
the easiest (with all irrelevant inputs zeroed out) to
the most di�cult (with none of the irrelevant inputs
zeroed out). Another way to sort examples is by the
margin yw

0
x, with easiest examples corresponding to

larger values. The learning rate is 1 (it does not matter
since there is no margin and the classifier output does
not depend on the magnitude of w

0
x but only on its

sign). Initial weights are sampled from a Normal(0,1).
We train the Perceptron with 200 examples (i.e., 200
Perceptron updates) and measure generalization error
at the end. Figure 1 shows average estimated gen-
eralization error measured at the end of training and
averaged across 500 repetitions from di↵erent initial
conditions and di↵erent random sampling of training
examples. We compare a no curriculum setting (ran-
dom ordering), with a curriculum setting in which
examples are ordered by easiness, starting with the
easiest examples, and two easiness criteria (number of
noisy irrelevant inputs, margin yw

0
x). All error rate

di↵erences between the curriculum strategy and the
no-curriculum are statistically significant (di↵erences
of more than .01 were all statistically significant at 5%
under a t-test).

5. Experiments on shape recognition

The task of interest here is to classify geometri-
cal shapes into 3 classes (rectangle, ellipse, trian-
gle), where the input is a 32⇥32 grey-scale image.
As shown in Figure 2, two di↵erent datasets were
generated: whereas GeomShapes data consist in im-
ages of rectangles, ellipses and triangles, BasicShapes

data only include special cases of the above: squares,

Figure 1. Average error rate of Perceptron, with or with-
out the curriculum. Top: the number of nonzero irrelevant
inputs determines easiness. Bottom: the margin yw0x de-
termines easiness.

circles and equilateral triangles. The di↵erence be-
tween BasicShapes data and GeomShapes data is that
BasicShapes images exhibit less variability in shape.
Other degrees of variability which are present in both
sets are the following: object position, size, orienta-
tion, and also the grey levels of the foreground and
background. Besides, some geometrical constraints are
also added so as to ensure that any shape object fits
entirely within the image, and a minimum size and
minimum contrast (di↵erence in grey levels) between
foreground and background is imposed.

Note that the above “easy distribution” occupying a
very small volume in input space compared to the tar-
get distribution does not contradict condition 4. In-
deed, the non-zero weights (on easy examples) can ini-
tially be very small, so that their final weight in the
target distribution can be very small.

Figure 2. Sample inputs from BasicShapes (top) and
GeomShapes (bottom). Images are shown here with a
higher resolution than the actual dataset (32x32 pixels).

The experiments were carried out on a multi-layer neu-
ral network with 3 hidden layers, trained by stochas-

Curriculum Learning
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Figure 4. Architecture of the deep neural network comput-
ing the score of the next word given the previous ones.

following ranking loss over sequences s sampled from
a dataset S of valid English text windows:

Cs =
X

w2D

1
|D|Cs,w =

X

w2D

1
|D| max(0, 1�f(s)+f(sw))

(5)
where D is the considered word vocabulary and S
is the set of training word sequences. Note that a
stochastic sample of the gradient with respect to Cs

can be obtained by sampling a counter-example word
w uniformly from D. For each word sequence s we
then compute f(s) and f(sw) and the gradient of
max(0, 1� f(s) + f(sw)) with respect to parameters.

6.1. Architecture

The architecture of our language model (Figure 4)
follows the work introduced by Bengio et al. (2001)
and Schwenk and Gauvain (2002), and closely resem-
bles the one used in Collobert and Weston (2008).
Each word i 2 D is embedded into a d-dimensional
space using a look-up table LTW (·): LTW (i) = Wi ,

where W 2 Rd⇥|D| is a matrix of parameters to
be learnt, Wi 2 Rd is the i

th column of W and
d is the embedding dimension hyper-parameter. In
the first layer an input window {s1, s2, . . . sn} of n

words in D is thus transformed into a series of vectors
{Ws1 , Ws2 , . . . Wsn} by applying the look-up table to
each of its words.

The feature vectors obtained by the look-up table layer
are then concatenated and fed to a classical linear
layer. A non-linearity (like tanh(·)) follows and the
score of the language model is finally obtained after
applying another linear layer with one output.

The cost (5) is minimized using stochastic gradient
descent, by iteratively sampling pairs (s, w) composed
of a window of text s from the training set S and a
random word w, and performing a step in the direction
of the gradient of Cs,w with respect to the parameters,
including the matrix of embeddings W .

Figure 5. Ranking language model trained with vs without
curriculum on Wikipedia. “Error” is log of the rank of the
next word (within 20k-word vocabulary). In its first pass
through Wikipedia, the curriculum-trained model skips ex-
amples with words outside of 5k most frequent words (down
to 270 million from 631 million), then skips examples out-
side 10k most frequent words (doing 370 million updates),
etc. The drop in rank occurs when the vocabulary size
is increased, as the curriculum-trained model quickly gets
better on the new words.

6.2. Experiments

We chose the training set S as all possible win-
dows of text of size n = 5 from Wikipedia
(http://en.wikipedia.org), obtaining 631 million
windows processed as in Collobert and Weston (2008).
We chose as a curriculum strategy to grow the vocabu-
lary size: the first pass over Wikipedia was performed
using the 5, 000 most frequent words in the vocabu-
lary, which was then increased by 5, 000 words at each
subsequent pass through Wikipedia. At each pass, any
window of text containing a word not in the consid-
ered vocabulary was discarded. The training set is
thus increased after each pass through Wikipedia. We
compare against no curriculum, where the network
is trained using the final desired vocabulary size of
20, 000. The evaluation criterion was the average of
the log of the rank of the last word in each test win-
dow, taken in a test set of 10, 000 windows of text not
seen during the training, with words from the most
20, 000 frequent ones (i.e. from the target distribu-
tion). We chose the word embedding dimension to be
d = 50, and the number of hidden units as 100.

In Figure 5, we observe that the log rank on the target
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[Bengio et al., ICML’09]
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Abstract

It is often laborious and costly to manually annotate
videos for training high-quality video recognition models,
so there has been some work and interest in exploring al-
ternative, cheap, and yet often noisy and indirect train-
ing signals for learning the video representations. How-
ever, these signals are still coarse, supplying supervision
at the whole video frame level, and subtle, sometimes en-
forcing the learning agent to solve problems that are even
hard for humans. In this paper, we instead explore ge-
ometry, a grand new type of auxiliary supervision for the
self-supervised learning of video representations. In par-
ticular, we extract pixel-wise geometry information as flow
fields and disparity maps from synthetic imagery and real
3D movies, respectively. Although the geometry and high-
level semantics are seemingly distant topics, surprisingly,
we find that the convolutional neural networks pre-trained
by the geometry cues can be effectively adapted to seman-
tic video understanding tasks. In addition, we also find that
a progressive training strategy can foster a better neural
network for the video recognition task than blindly pooling
the distinct sources of geometry cues together. Extensive re-
sults on video dynamic scene recognition and action recog-
nition tasks show that our geometry guided networks signif-
icantly outperform the competing methods that are trained
with other types of labeling-free supervision signals.

1. Introduction

Video understanding is among one of the most funda-
mental research problems in computer vision and machine
learning. The ubiquity of video acquisition devices (e.g.,
smart phones, surveillance cameras, etc.) has created videos
far surpassing what we can watch. It has therefore been a
pressing need to develop automatic video analysis and un-
derstanding algorithms for various applications.

To recognize actions and events happening in videos,
recent approaches that employ deep convolutional neu-
ral networks (CNNs) [12, 17, 31, 34, 35], recurrent net-
works [15, 33, 4], and attention networks [23, 22] have

achieved state-of-the-art results. They fall into the paradigm
of supervised learning and rely on the existence of large-
scale well-labeled training data.

However, it is extremely laborious and costly to manu-
ally annotate videos. The actions of interest, for instance
“cutting in kitchen”, may last for only several seconds in
an hour-long video. In order to obtain a training exam-
ple of this action, the annotator needs to watch through the
lengthy video, manually localize those positive frames, and
then trim the video. Even with sophisticated GUIs, the la-
bor cost for obtaining one training video sequence is still
much higher than that of labeling many images. This prob-
lem becomes more severe as the number of action classes
grows.

To alleviate the demand for costly human annotations,
there has been some work and interest in exploring alterna-
tive, cheap, and yet often noisy and indirect training signals.
By pre-training a neural network with large-scale data with
such supervision signals, a strongly discriminative network
can then be obtained afterwards through fine-tuning on a
small-scale human annotated dataset. Various signals have
been explored in the past [37, 26, 7, 1, 16, 24, 27]. How-
ever, these signals are still coarse or vague. The auxiliary
signal is often at the whole video frame level rather than
pixel level. In addition, some of such supervisions are sub-
tle; for example, the temporal ordering used in [24] is even
hard for humans to determine.

In this paper, we explore a new type of auxiliary super-
vision signal — geometry cues. In particular, we extract
pixel-wise geometry information such as flow fields and dis-
parity maps from synthetic images and real 3D movies, re-
spectively. Although the geometry and semantics seem to
be two distant topics historically, surprisingly, we find that
the network pre-trained by the geometry cues can be well
adapted to semantic understanding tasks. Empirical results
show that our geometry guided networks significantly out-
perform the baseline methods pre-trained by other auxiliary
signals in the previous work. Intuitively, the signal that can
be used to assist semantic understanding has to be strongly
correlated with semantics. Our experimental results there-
fore also indicate the intrinsic correlation between the ge-

[Gan et al., CVPR’18]
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videos for training high-quality video recognition models,
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tic video understanding tasks. In addition, we also find that
a progressive training strategy can foster a better neural
network for the video recognition task than blindly pooling
the distinct sources of geometry cues together. Extensive re-
sults on video dynamic scene recognition and action recog-
nition tasks show that our geometry guided networks signif-
icantly outperform the competing methods that are trained
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Video understanding is among one of the most funda-
mental research problems in computer vision and machine
learning. The ubiquity of video acquisition devices (e.g.,
smart phones, surveillance cameras, etc.) has created videos
far surpassing what we can watch. It has therefore been a
pressing need to develop automatic video analysis and un-
derstanding algorithms for various applications.

To recognize actions and events happening in videos,
recent approaches that employ deep convolutional neu-
ral networks (CNNs) [12, 17, 31, 34, 35], recurrent net-
works [15, 33, 4], and attention networks [23, 22] have

achieved state-of-the-art results. They fall into the paradigm
of supervised learning and rely on the existence of large-
scale well-labeled training data.

However, it is extremely laborious and costly to manu-
ally annotate videos. The actions of interest, for instance
“cutting in kitchen”, may last for only several seconds in
an hour-long video. In order to obtain a training exam-
ple of this action, the annotator needs to watch through the
lengthy video, manually localize those positive frames, and
then trim the video. Even with sophisticated GUIs, the la-
bor cost for obtaining one training video sequence is still
much higher than that of labeling many images. This prob-
lem becomes more severe as the number of action classes
grows.

To alleviate the demand for costly human annotations,
there has been some work and interest in exploring alterna-
tive, cheap, and yet often noisy and indirect training signals.
By pre-training a neural network with large-scale data with
such supervision signals, a strongly discriminative network
can then be obtained afterwards through fine-tuning on a
small-scale human annotated dataset. Various signals have
been explored in the past [37, 26, 7, 1, 16, 24, 27]. How-
ever, these signals are still coarse or vague. The auxiliary
signal is often at the whole video frame level rather than
pixel level. In addition, some of such supervisions are sub-
tle; for example, the temporal ordering used in [24] is even
hard for humans to determine.

In this paper, we explore a new type of auxiliary super-
vision signal — geometry cues. In particular, we extract
pixel-wise geometry information such as flow fields and dis-
parity maps from synthetic images and real 3D movies, re-
spectively. Although the geometry and semantics seem to
be two distant topics historically, surprisingly, we find that
the network pre-trained by the geometry cues can be well
adapted to semantic understanding tasks. Empirical results
show that our geometry guided networks significantly out-
perform the baseline methods pre-trained by other auxiliary
signals in the previous work. Intuitively, the signal that can
be used to assist semantic understanding has to be strongly
correlated with semantics. Our experimental results there-
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(c)  Pizza Tossing

... ...

Figure 1. To utilize Web images and videos for video classification, our key observation is that
the query-relevant images and frames typically appear in both domains with similar appearances,
while the irrelevant images and videos have their own distinctiveness. Here we show Web images
(top) and video frames (bottom) retrieved by keywords basketball dunk, bench press and pizza
tossing from search engines. The relevant ones are marked in red.

search engines. These two observations motivate us to focus on Webly-supervised video
recognition by exploiting Web images and Web videos. Using video frames in addition
to images not only adds more diverse examples for training better appearance models,
but also allows us to train better temporal models, as found in [38,12].

However, there are two key difficulties that prevent us from using Web data directly.
First, the images and videos retrieved from Web search engines are typically noisy. They
may contain irrelevant results, or relevant results from a completely different domain
than users’ interest (e.g. cartoons or closeup shots of objects). To make the problem
worse, Web videos are usually untrimmed and could be several minutes to hours long.
Even for a correctly tagged video, the majority of its frames could be irrelevant to the
actual action or event. Our goal then becomes to identify query-relevant images and
video frames from the Web data which are both noisily and weakly labeled, in order to
train good machine learning models for action and event classification.

Our proposed method is based on the following observation: the relevant images
and video frames typically exhibit similar appearances, while the irrelevant images and
videos have their own distinctiveness. In Figure 1, we show the Web images (top) and
video frames (bottom) retrieved by keywords basketball dunk, bench press and pizza
tossing. We can see that for the basketball dunk example, non-slam-dunk frames in the
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Table 6. Comparisons with state of the arts results using fully labeled data on UCF101.

Method Acc (%)
LRCN [7] 71.1

LSTM composite model [34] 75.8
IDT + FV [41] 87.9

C3D [40] 82.3
Karpathy et al. [20] 65.4

Spatial stream network [29] 73.0
Ours (spatial) 69.3

4.3 Webly-supervised Multimedia Event Detection

In order to have a better understanding of our approach, we also apply it to the large-
scale TRECVID MED 2013 and 2014 datasets. There have been some systems on the
MED tasks which learn event detectors from the Web data. While we only use the class
names to download Web images and videos, the existing systems often employ addi-
tional queries like event related concepts. We contrast our work to the following: (1)
Concept Discovery [2], (2) Bi-Concept [14], (3) Composite Concepts [14], (4) Event-
Net [46], and (5) Selected Concepts [31]. Approach (1) uses Web images to train event
detectors, (2) – (4) use Web videos to train event detectors, and (5) firstly trains concept
detectors using Web images, uses them to rank testing videos, and then re-trains event
detectors with the top-ranked testing videos. We note that the strategy of (5) can be
readily added as a post-processing component to other methods as well.

Table 7. Comparisons with other state-of-the-art zero-shot/webly-supervised event detection sys-
tems on MEDTest 2013.

Method mAP (%)
Concept Discovery [2] 2.3

Bi-concept [14] 6.0
Composite Concept [14] 6.4

EventNet [46] 8.9
Selecting [31] 11.8

Ours 16.1

For a fair comparison, we report our results on MEDTest 2013 and directly com-
pare them with state-of-the-art results quoted from original papers. The results in Ta-
ble 7 show that our framework outperforms the other systems by a large margin. For
additional analysis, we also provide per-event-class results in Figure 3 and Figure 4,
respectively on MEDTest 2013 and MEDTest 2014. The numbers are reported of using
both all crawled data and our selected data (reject ratio 10%) to fine-tune VGGNet19.
We observe performance gains for 17 out of 20 classes on MEDTest 2013 and 18 of
20 classes on MEDTest 2014, verifying the effectiveness of our approach to removing
noisy data from the Web images and Web video frames.

[Gan et al., ECCV’16]
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Query-focused video summarization

[Sharghi et al., ECCV’16,
CVPR’17, ECCV’18?]
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