Learning from Web Data and Adapting beyond It

Boqing Gong BoqingGo@outlook.com

Learning based visual recognition

Courtesy K. Grauman

Learning based visual recognition

Web data with noisy labels
 Need different training techniques

Courtesy K. Grauman

Label correction & re-weighting

Label Correction

Re-weigh labels/data terms

Label correction & re-weighting removal

Label Correction

Hard to rectify wrong labels Easier to just remove wrong labels

Semi-supervised learning? Caveat: outlier images

A consistent term & its dual effect

[Laine & Aila, ICLR 2017]

Outlier still helps!

Noisy labels, no outlier

Result on CIFAR-10 and MNIST

Table 3. Comparison results on CIFAR-10 and MINIST								
Methods	CIFAR-10 14-layer ResNet				MNIST fully connected			
	p = 0	sy.p = 0.2	asy.p = 0.2	asy.p = 0.6	p = 0	sy.p = 0.2	asy.p = 0.2	asy.p = 0.6
cross-entropy [37]	87.8	83.7	85.0	57.6	97.9 ± 0.0	96.9 ± 0.1	97.5 ± 0.0	53 ± 0.6
unhinged (BN) [57]	86.9	84.1	83.8	52.1	97.6 ± 0.0	96.9 ± 0.1	97.0 ± 0.1	71.2 ± 1.0
sigmoid (BN) [12]	76.0	66.6	71.8	57.0	97.2 ± 0.1	93.1 ± 0.1	96.7 ± 0.1	71.4 ± 1.3
savage [30]	80.1	77.4	76.0	50.5	97.3 ± 0.0	96.9 ± 0.0	97.0 ± 0.1	51.3 ± 0.4
bootstrap soft [40]	87.7	84.3	84.6	57.8	97.9 ± 0.0	96.9 ± 0.0	97.5 ± 0.0	53.0 ± 0.4
bootstrap hard [40]	87.3	83.6	84.7	58.3	97.9 ± 0.0	96.8 ± 0.0	97.4 ± 0.0	55.0 ± 1.3
backward [37]	87.7	80.4	83.8	66.7	97.9 ± 0.0	96.9 ± 0.0	96.7 ± 0.1	67.4 ± 1.5
forward [37]	87.4	83.4	87.0	74.8	97.9 ± 0.0	96.9 ± 0.0	97.7 ± 0.0	64.9 ± 4.4
cross-entropy	87.9	82.4	85.5	56.2	98.0 ± 0.1	97.1 ± 0.1	97.6± 0.2	52.9±0.6
improved baseline	87.8	83.6	85.2	74.1	98.0 ± 0.1	97.1 ± 0.1	97.7 ± 0.1	76.7 ± 1.6
ours	88.0	84.5	85.6	75.8	98.2 ± 0.1	97.7 ± 0.4	97.8 ± 0.1	83.4 ± 1.3

[Ding et al., WACV'18]

Noisy labels, & outlier images

Results on Clothing1M

Ħ.	model	loss / method	initialization	training set	accuracy (reported)	accuracy (our impl.)
1	AlexNet	pseudo-label [25]	#9	1M, 50K	73.04	-
2	AlexNet	bottom-up [47]	#9	1M, 50K	76.22	-
3	AlexNet	label noise model [59]	#9	1M, 50K	78.24	-
4	50-ResNet	cross-entropy	ImageNet	IM	68.94	69.03
5	50-ResNet	backward [37]	ImageNet	IM	69.13	-
6	50-ResNet	forward [37]	ImageNet	IM	69.84	-
7	50-ResNet	ours	ImageNet	IM	-	77.34
8	50-ResNet	ours	ImageNet	1M, 50K	-	79.38
9	AlexNet	cross-entropy	ImageNet	50K	72.63	-
10	50-ResNet	cross-entropy	ImageNet	50K	75.19	74.84
11	50-ResNet	cross-entropy	#6	50K	80.38	-
12	50-ResNet	cross-entropy	#7	50K	-	80.44
13	50-ResNet	cross-entropy	#8	50K	-	80.53

[Ding et al., WACV'18]

Detour: a consistent term & its dual effect

$$rac{d_Y(f(x_1),f(x_2))}{d_X(x_1,x_2)} \leq K.$$

Augment the same example twice
→ Two data points around that example
→ Lipschitz continuity in Wasserstein GAN

[Xiang*, Gong*, et al., ICLR 2018]

Outline

Web data with noisy labels Hard to rectify wrong labels Easier to just remove wrong labels

Semi-supervised learning

Web data with accurate labels 3D movies

Web images vs. Web videos

3D movies

Geometry & semantics

[[]Snavely et al, CVPR '06]

[Sinha et al, ICCV'93]

Shape from dense views geometric problem

Shape from one view semantic problem

Courtesy K. Grauman & D. Jayaraman

Results on UCF101

It is important to follow the right curriculum!

[Gan et al., CVPR'18]

Detour: curriculum learning

Feed a learning system "easy" examples first Gradually introduce more difficult ones

[Bengio et al., ICML'09]

curriculum

million

updates

1500

Feed a learning system "easy" tasks first Their solutions find better local optima, and act as a regularizer, i.e., focusing on the test

Feed a learning system "easy" tasks first Their solutions find better local optima, and act as a regularizer, i.e., focusing on the test

Input: An urban scene image Algorithm: Super-pixel + Logistic regression Output: Labels of some super-pixels

Feed a learning system "easy" tasks first Their solutions find better local optima, and act as a regularizer, i.e., focusing on the test

Input: An urban scene image Algorithm: Logistic regression Output: Label distributions

Feed a learning system "easy" tasks first Their solutions find better local optima, and act as a regularizer, i.e., focusing on the test

$$\min_{\Theta} \mathcal{L}(Y_s, \widehat{Y}_s) + d(p_t, p_t(\widehat{Y}_t))$$

s: Source, t: Target

 p_t : Perturbation function

[Yang et al., ICCV'17]

Outline

Web data with noisy labels Hard to rectify wrong labels Easier to just remove wrong labels

Semi-supervised learning

Web data with accurate labels Geometry from 3D movies Geometry encodes semantics

Web data of multi-modalities Web images vs. Web videos Curriculum learning & curriculum adaptation

A comment on self-supervised learning

Geometry Guided Convolutional Neural Networks for Self-Supervised Video Representation Learning

Self-supervised learning??

Supervised learning from self-labeled data

[Gan et al., CVPR'18]

A comment or

Geometry Guided Self-Supervise

Self-supervised

Supervised lear

self-supervised learning

Videos images Nows Shopping

More

Settings Tools

About 31,700,000 results (0.39 seconds)

Scholarly articles for self-supervised learning

... Road Following using Self-Supervised Learning and ... - Lieb - Cited by 100 Self-supervised Monocular Road Detection in Desert ... - Dahlkamp - Cited by 369 Self-supervised learning for object recognition based ... - Wu - Cited by 43

Self-Supervised Learning: A Key to Unlocking Self-Driving Cars?

https://medium.com/.../self-supervised-learning-a-key-to-unlocking-self-driving-cars-... * Apr 6, 2018 - Self-supervised learning is an innovative approach that uses visual signals or domain knowledge, intrinsically correlated to the image, ...

Self-supervised Learning of Motion Capture

https://anxiv.org > cs * by HYF Tung - 2017 - Cited by 3 - Related articles

Dec 4, 2017 - In this work, we propose a learning based motion capture model for ... both worlds of supervised learning and test-time optimization: supervised

Self-supervised learning of visual features through embedding images ... https://arxiv.org.>cs +

by L Gomez - 2017 - Cited by 6 - Related articles

May 24, 2017 - We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image)

GitHub - jason718/awesome-self-supervised-learning: A curated list of

https://github.com/jason718/awesome-self-supervised-learning * README.md. Awesome Self-Supervised Learning Awesome. A curated list of awesome Self-Supervised Learning resources. Inspired by awesome-deep-vision, ...

What is the difference between self-supervised and unsupervised

https://www.guora.com/What-is-the-difference-between-self-supervised-and-unsupervise... Dec 8, 2017 - That is, self-supervised is an approach that use non-visual domain knowledge to help the supervised method of feature learning. One can ...

Outline

Web data with noisy labels Hard to rectify wrong labels Easier to just remove wrong labels

Semi-supervised learning

Web data with accurate labels Geometry from 3D movies Geometry encodes semantics

Web data of multi-modalities Web images vs. Web videos Curriculum learning & curriculum adaptation

Given a query,

Relevant Web images & video frames are alike An irrelevant Web image or video frame is irrelevant in its own way

(a) Basketbal Dunk

Given a query, Relevant Web images & video frames are alike An irrelevant Web image or video frame is irrelevant in its own way

(b) Bench Press

Given a query,

Relevant Web images & video frames are alike An irrelevant Web image or video frame is irrelevant in its own way

(c) Pizza Tossing

Mutually vote for commonness to select training examples

(c) Pizza Tossing

Kernel mean embedding

 μ maps distribution P to Reproducing Kernel Hilbert Space μ is injective if $\phi(\cdot)$ is characteristic

[Müller'97, Gretton et al.'07, Sriperumbudur et al.'10]

Empirical kernel mean estimation

Empirical kernel embedding:

$$\hat{\mu}[P] = \frac{1}{\mathsf{n}} \sum_{i=1}^{\mathsf{n}} \phi(x_i), \quad x_i \sim P$$

Mutually vote by matching kernel means

Empirical kernel embedding:

$$\hat{\mu}[P] = \frac{1}{\mathsf{n}} \sum_{i=1}^{\mathsf{n}} \phi(x_i), \quad x_i \sim P$$

Mutually vote by matching kernel means

$$\min_{\alpha,\beta\in\{0,1\}} \left\| \frac{1}{\sum_{m} \alpha_m} \sum_{m'} \alpha_{m'} \phi(I_m) - \frac{1}{\sum_{n} \beta_n} \sum_{m'} \beta_{m'} \phi(F_m) \right\| + \mathcal{R}(\beta)$$

 $\alpha_m = \begin{cases} 1 & \text{if } I_m \text{ is similar to selected video frames} \\ 0 & \text{else} \end{cases}$

 $\mathcal{R}(\beta) =$ Reconstruct video from the selected video frames

Mutually vote by matching kernel means

Table 6. Comparisons with state of the arts results using fully labeled data on UCF101.

Method	Acc (%)
LRCN [7]	71.1
LSTM composite model [34]	75.8
IDT + FV [41]	87.9
C3D [40]	82.3
Karpathy et al. [20]	65.4
Spatial stream network [29]	73.0
Ours (spatial)	69.3

[Gan et al., ECCV'16]

Outline

Web data with noisy labels Hard to rectify wrong labels Easier to just remove wrong labels

Semi-supervised learning

Web data with accurate labels Geometry from 3D movies Geometry encodes semantics

Web data of multi-modalities Web images vs. Web videos Curriculum learning & curriculum adaptation

Mutually vote by kernel means

Web data with noisy labels Hard to rectify wrong labels Easier to just remove wrong labels

Web data with accurate labels Geometry from 3D movies Geometry encodes semantics

Web data of multi-modalities Web images vs. Web videos

Query, tags, news, audio, etc.

Semi-supervised learning

Curriculum learning & curriculum adaptation

Mutually vote by kernel means

Query-focused video summarization

Web data with noisy labels Hard to rectify wrong labels Easier to just remove wrong labels

Web data with accurate labels Geometry from 3D movies Geometry encodes semantics

Web data of multi-modalities Web images vs. Web videos

Query, tags, news, audio, etc.

Semi-supervised learning

Curriculum learning & curriculum adaptation

Mutually vote by kernel means

Web data with noisy labels Hard to rectify wrong labels Easier to just remove wrong labels

Web data with accurate labels Geometry from 3D movies Geometry encodes semantics

Web data of multi-modalities Web images vs. Web videos

Query, tags, news, audio, etc.

Semi-supervised learning

Curriculum learning & curriculum adaptation

Mutually vote by kernel means

Multi-modal methods Domain adaptation

References

[1] A Semi-Supervised Two-Stage Approach to Learning from Noisy Labels. Y Ding, L Wang, D Fan, & B Gong. WACV 2018.

[2] Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect. X Wei*, B Gong*, Z Liu, & L Wang. ICLR 2018.

[3] Geometry-Guided CNN for Self-Supervised Video Representation Learning. C Gan, B Gong, K Liu, H Su, & L Guibas. CVPR 2018.

[4] Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes. Y Zhang, P David, & B Gong. ICCV 2017.

[5] Webly-supervised Video Recognition by Mutually Voting for Relevant Web Images and Web Video Frames. C Gan, C Sun, L Duan, & B Gong. ECCV 2016.

[6] Query-Focused Extractive Video Summarization. A. Sharghi, B Gong, & M Shah. ECCV 2016.