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Il Learning based visual recognition

Training images

Courtesy K. Grauman



Il Learning based visual recognition

Annotator
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Training images

1. Web data with noisy Iabels
= Need different training techniques

Courtesy K. Grauman



Il Label correction & re-weighting

Label Correction

Re-weigh labels/data terms
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Il Label eorrection-8tre-weighting removal

Label Correction

Hard to rectify wrong labels
Easier to just remove wrong labels

Semi-supervised learning?
Caveat: outlier images




II A consistent term & its dual effect

[Laine & Aila, ICLR 2017]
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Outlier still helps!
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| Noisy labels, no outlier

Result on CIFAR-10 and MNIST

Table A Comparson results on CIFAR - 10 and MINIST

Methods CIFAR-10 14 Javer ResNet MNIST fully connecied

» 0 sy 02 wsvp=02 wxyp AR P | sy 02 asyp=02 asyp RN
cross-entropy | 37] 8T 817 85.0 5746 979400 949+ 0.1 975400 53+ 06
unhinged (BN) [S7] 849 84.1 LR 521 976400 %940 9704 0.1 M24£10
sigmond (BN) [ 12) 760 Ot 6 R 570 972+01 951+£0) 967+ 01 14213
savage | ) sl 174 6.0 S0 973400 99+ 00 9704 01 £13+ 04
bootstrap sofl [40) 877 LR 546 S7T8 979+ 00 9900 975+ 00 S30£04
bootstrap hard [#0] 87 .3 Bib 5e.7 583 979+ 00 SR8+ 00 9744 00 S50+ 1.3
backward [37) 87.7 S04 LR 66.7 979L£ 00 S%9L£00 967401 674415
forward | 37) 874 LR 870 T4 8 979400 99400 977400 6494 44
CTOSS-C Nropy 879 824 RS.S 5620 COx O+ 0O 971+ 01 976+ 02 529+ 06
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[Ding et al., WACV'18]




| Noisy labels, & outlier images
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Results on Clothing1M

Table 4, Comparison results on the Clothing 1M dataset | 59
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Il Detour: a consistent term & its dual effect

Yy emm - - am aam Cross-
) entropy
X1/ Xy 1 stochastic dropout and
augmentatio Gaussian noise
squared
IQQE!!!!!

dy (f(z1), f(z2)) _ X
dx(zy,z2) ~
Augment the same example twice
= Two data points around that example
= Lipschitz continuity in Wasserstein GAN

loss

[Xiang®, Gong®, et al., ICLR 2018]



|| Outline

Web data with noisy labels
Hard to rectify wrong labels
Easier to just remove wrong labels

Semi-supervised
learning

Web data with accurate labels
3D movies

Web data of multi-modalities
Web images vs. Web videos




I| 3D movies




Il Geometry & semantics

[Snavely et al, CVPR ‘06] [Sinha et al, ICCV’93]

Shape from dense views Shape from one view
geometric problem semantic problem

Courtesy K. Grauman & D. Jayaraman



Il 3D movies

_W-

Tmnlng on Flying chms

W

Training on 3D movies

— Start with synthetic imagery
and precise geometry cues

Followed by 3D movies to
Incorporate reality cues
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Il Results on UCF101

It is important to follow the right curriculum!

[Gan et al., CVPR'18]



I| Detour: curriculum learning

Feed a learning system “easy” examples first
Gradually introduce more difficult ones

[Bengio et al., ICML’09]
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ll Detour: curriculum domain adaptation

Feed a learning system “easy” tasks first

Their solutions find better local optima,
and act as a regularizer, i.e., focusing on the test

| i
data

) s O
synthetic Sidewalk

Imagery



Il Detour: curriculum domain adaptation

Feed a learning system “easy” tasks first
Their solutions find better local optima,

and act as a reqgularizer, i.e., focusing on the test

L —

Sidewalk

Input: An urban scene image
Algorithm: Super-pixel + Logistic regression
Output: Labels of some super-pixels



Il Detour: curriculum domain adaptation

Feed a learning system “easy” tasks first

Sky
Road

Pedestrian (B
Tree

Traffic Sign W

Input:An urban scene image
Algorithm: Logistic regression
Output: Label distributions



Il Detour: curriculum domain adaptation

Their solutions find better local optima,
and act as a reqgularizer, i.e., focusing on the test

~~ ~

min L(Ys,Ys) + d(pe, pe(Yr))
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Il Detour: curriculum domain adaptation
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Sim-->Sim Sim-->Real Sim-->Real w/DA Half sim half real

[Yang et al., ICCV’17]




I| Outline

Web data with noisy labels
Hard to rectify wrong labels
Easier to just remove wrong labels

Semi-supervised
learning

Web data with accurate labels

Geometry from 3D movies
Geometry encodes semantics

Curriculum learning &
curriculum adaptation

Web data of multi-modalities
Web images vs. Web videos




I| A comment on self-supervised learning

Geometry Guided Convolutional Neural Networks for

Sel=Supervised Video Representation f-earning

Self-supervised learning??

Supervised learning from self-labeled data

Sb! [Gan et al., CVPR'18]
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I| Outline

Web data with noisy labels
Hard to rectify wrong labels
Easier to just remove wrong labels

Semi-supervised
learning

Web data with accurate labels

Geometry from 3D movies
Geometry encodes semantics

Curriculum learning &
curriculum adaptation

Web data of multi-modalities
Web images vs. Web videos




I| Web images vs. Web videos

Given a query,
Relevant Web images & video frames are alike

An irrelevant Web image or video frame is
irrelevant in its own way

(a) Basketbal Dunk



Il Web images vs. Web videos

Given a query,
Relevant Web images & video frames are alike

An irrelevant Web image or video frame is
irrelevant in its own way

(b) Bench Press



Il Web images vs. Web videos

Given a query,
Relevant Web images & video frames are alike

An irrelevant Web image or video frame is
irrelevant in its own way

(c) Pizza Tossing



Il Web images vs. Web videos

Mutually vote for commonness
to select training examples

(c) Pizza Tossing



I| Kernel mean embedding

1 maps distribution P to Reproducing Kernel Hilbert Space

1 is injective if ¢b( *) is characteristic

[Muller’97,Gretton et al’07,Sriperumbudur et al.’ | 0]
L



II Empirical kernel mean estimation

p[P] = E.[6(x)]
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Empirical kernel embedding:
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II Mutually vote by matching kernel means

p[P] = E.[6(x)]
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Il Mutually vote by matching kernel means

. 1 1
O"ﬁnel?&l} D m Om %/: A @) D n Pn %/: B (Fm) || + R(P)

1 1t I,, is similar to selected video frames
Oy, =
0 else

R(B) = Reconstruct video from the selected video frames



Il Mutually vote by matching kernel means

Table 6. Comparisons with state of the arts results using fully labeled data on UCF101.

Method Acc (%)
LRCN [7] 71.1
LSTM composite model [34] 75.8
T+ FV [4]1] 87.9
C3D [40] 82.3
Karpathy et al. [20] 65.4
Spatial stream network [29]  73.0
Ours (spatial) 69.3

¥l [Gan et al., ECCV'16]
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Hard to rectify wrong labels
Easier to just remove wrong labels

Semi-supervised
learning

Web data with accurate labels

Geometry from 3D movies
Geometry encodes semantics

Curriculum learning &
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Web data of multi-modalities
Web images vs. Web videos

Mutually vote by
kernel means




I| Future work: The Web is rich & inspiring

Web data with noisy labels
Hard to rectify wrong labels
Easier to just remove wrong labels

Semi-supervised
learning

Web data with accurate labels

Geometry from 3D movies
Geometry encodes semantics

Curriculum learning &
curriculum adaptation

Web data of multi-modalities
Web images vs. Web videos

Mutually vote by
kernel means

Query, tags, news, audio, etc.



Il Future work: The Web is rich & inspiring

Query-focused video summarization

Dasreyland and %00c

[Sharghi et al., ECCV’16,
CVPR’17, ECCV’187]




I| Future work: The Web is rich & inspiring

Web data with noisy labels
Hard to rectify wrong labels
Easier to just remove wrong labels

Semi-supervised
learning

Web data with accurate labels

Geometry from 3D movies
Geometry encodes semantics

Curriculum learning &
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Web data of multi-modalities
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II Future work: The Web is rich & inspiring

Web data with noisy labels
Hard to rectify wrong labels
Easier to just remove wrong labels

Semi-supervised
learning

Web data with accurate labels

Geometry from 3D movies
Geometry encodes semantics

Curriculum learning &
curriculum adaptation

Web data of multi-modalities
Web images vs. Web videos

Mutually vote by
kernel means

Query, tags, news, audio, etc.
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Multi-modal methods
Domain adaptation
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