Learning and Adapting from the Web for Visual Recognition

Boqing Gong

Learning based visual recognition

Courtesy K. Grauman

Domain adaptation: key to use simulation "for real"

Simulation to reality for segmentation, detection, Dynamics planning & control, etc.

Learning based visual recognition

Label correction & re-weighting

Correct wrong labels

Reweigh data/label terms

Label correction & re-weighting removal

Correct wrong labels

Hard to rectify wrong labels

Easier to simply remove them (but keep the images)

Semi-supervised learning? Caveat: outlier images

Label correction & re-weighting removal

Correct wrong labels

Hard to rectify wrong labels

Easier to simply remove them (but keep the images)

Semi-supervised learning? Caveat: outlier images

A consistent term & its dual effect

Outlier images still help.

[Laine & Aila, ICLR' 17]

"Web data" with noisy labels, no outlier

Results on CIFARI0 & MNIST

		Table 3.	Comparison rest	alts on CIFAR-1	0 and MINIST	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
Methods	CIFAR-10 14-layer ResNet				MNIST fully connected			
	p = 0	sy.p = 0.2	asy.p = 0.2	asy.p = 0.6	p = 0	sy.p = 0.2	asy.p = 0.2	asy.p = 0.6
cross-entropy [37]	87.8	83.7	85.0	\$7.6	97.9 ± 0.0	96.9 ± 0.1	97.5 ± 0.0	53± 0.6
unhinged (BN) [57]	86.9	84.1	83.8	52.1	97.6± 0.0	96.9 ± 0.1	97.0 ± 0.1	71.2 ± 1.0
sigmoid (BN) [12]	76.0	66.6	71.8	57.0	97.2 ± 0.1	93.1±0.1	96.7 ± 0.1	71.4±1.3
savage [30]	80.1	77.4	76.0	50.5	97.3±0.0	96.9 ± 0.0	97.0 ± 0.1	51.3 ± 0.4
bootstrap soft [40]	87.7	84.3	84.6	57.8	97.9±0.0	96.9 ± 0.0	97.5 ± 0.0	53.0 ± 0.4
bootstrap hard [40]	87.3	83.6	84.7	58.3	97.9 ± 0.0	96.8 ± 0.0	97.4 ± 0.0	55.0 ± 1.3
backward [37]	87.7	80.4	83.8	66.7	97.9 ± 0.0	96.9 ± 0.0	96.7 ± 0.1	67.4±1.5
forward [37]	87.4	83.4	87.0	74.8	97.9 ± 0.0	96.9 ± 0.0	97.7 ± 0.0	64.9 ± 4.4
cross-entropy	87.9	82.4	85.5	56.2	98.0 ± 0.1	97.1 ± 0.1	97.6 ± 0.2	52.9 ± 0.6
improved baseline	87.8	83.6	85.2	74.1	98.0 ± 0.1	97.1±0.1	97.7 ± 0.1	76.7 ± 1.6
ours	88.0	84.5	85.6	75.8	98.2 ± 0.1	97.7 ± 0.4	97.8 ± 0.1	83.4 ± 1.3

[Ding et al., WACV'18]

"Web data" with noisy labels & outlier images

Results on Clothing I M

Table 4. Comparison results on the Clothing1M dataset [59].						
#	model	loss / method	initialization	training set	accuracy (reported)	accuracy (our impl.)
1	AlexNet	pseudo-label [25]	#9	1M, 50K	73.04	-
2	AlexNet	bottom-up [47]	#9	IM, 50K	76.22	-
3	AlexNet	label noise model [59]	#9	1M, 50K	78.24	
4	50-ResNet	cross-entropy	ImageNet	IM	68.94	69.03
5	50-ResNet	backward [37]	ImageNet	IM	69.13	-
6	50-ResNet	forward [37]	ImageNet	IM	69.84	-
7	50-ResNet	ours	ImageNet	IM	-	77.34
8	50-ResNet	ours	ImageNet	1M, 50K		79.38
9	AlexNet	cross-entropy	ImageNet	50K	72.63	-
10	50-ResNet	cross-entropy	ImageNet	50K	75.19	74.84
11	50-ResNet	cross-entropy	#6	50K	80.38	
12	50-ResNet	cross-entropy	#7	50K	-	80.44
13	50-ResNet	cross-entropy	#8	50K	-	80.53

[Ding et al.,WACV'18]

A consistent term & its dual effect

Lipschitz continuity in WGAN

WGAN

Discriminator/critic is Lipschitz continuous

 $\min_{f} \quad \text{Loss} \\ \text{s.t.} \quad \|f\|_{L} \leq 1$

L-continuity by gradient penalty

L-continuity by gradient penalty & definition

A consistent term & its dual effect

A consistent term & its dual effect

Results on CIFAR10 (Semi-Sup.)

Method	Test error (%)
Ladder (Rasmus et al., 2015)	20.40 ± 0.47
VAT (Miyato et al., 2017)	10.55
TE (Laine & Aila, 2016)	12.16 ± 0.24
Teacher-Student (Tarvainen & Valpola, 2017)	12.31 ± 0.28
CatGANs (Springenberg, 2015)	19.58 ± 0.58
Improved GANs (Salimans et al., 2016)	18.63 ± 2.32
ALI (Dumoulin et al., 2016)	17.99 ± 1.62
CLS-GAN (Qi, 2017)	17.30 ± 0.50
Triple GAN (Li et al., 2017a)	16.99 ± 0.36
Improved semi-GAN (Kumar et al., 2017)	16.78 ± 1.80
Our CT-GAN	$\boldsymbol{9.98\pm0.21}$

Outline

Web data with noisy labels Hard to rectify wrong labels Easier to remove wrong labels

Web data with accurate labels

3D videos/movies

Web data of multi-modalities

Web images vs. Web videos

Semi-sup. Learning WGAN

3D videos/movies & geometry

Geometry & semantics

[Snavely et al, CVPR '06]

Shape from dense views geometric problem

[Sinha et al, ICCV'93]

Shape from one view semantic problem

Courtesy K. Grauman & D. Jayaraman

Geometry guided CNN for semantics tasks

Key: to follow the right curriculum

[Gan et al., CVPR'18]

Curriculum learning

Feed a learning system "easy" examples first Gradually introduce more difficult ones

[Bengio et al., ICML'09]

Curriculum domain adaptation

Feed a learning system "easy" **tasks** first The solutions to them find good local optima, acting as an effective regularizer

Curriculum domain adaptation

Feed a learning system "easy" **tasks** first The solutions to them find good local optima, acting as an effective regularizer

Synthetic imagery \rightarrow Real photos

An intelligent robot

2204 3048 2300 8060 608 8 228 2868 2208 2088 2086

Curriculum domain adaptation

About 1.5 hrs to label one such image!

Image

Baseline

Groundtruth

Easy task 1: predict label distributions

Input: An urban scene image Algorithm: Logistic regression Output: Label distributions

Easy task 2: Label landmark superpixels

Input: An urban scene image Algorithm: Superpixel + Logistic regression Output: Labels of some super-pixels

Simulation → real world: <u>catastrophic</u> performance drop

Simulation \rightarrow SimSim \rightarrow Cityscapes Adaptation

[Zhang et al., ICCV'I7]

Outline

Web data with noisy labels Hard to rectify wrong labels Easier to remove wrong labels

Web data with accurate labels

3D videos/movies

Web data of multi-modalities

Web images vs. Web videos

Semi-sup. Learning WGAN

Curriculum learning / domain adaptation

Cause: standard assumption in machine learning Same underlying distribution for training and testing

Consequence:

Poor cross-domain generalization

Brittle systems in dynamic and changing environment

A realistic obstacle for autonomous systems

Systems often deployed to new environments, not re-producible in house

Expensive to collect training data to cover some target environments

Systems degrade over time

Environments change over time

Etc.

Synthetic imagery \rightarrow Real photos

[Zhang et al., ICCV'17]

Adapting face detector to a user's album

[Jamal et al., CVPR'18]

Middle-level concepts describing objects, faces, etc. Shared by different categories

Attribute detection

[Gan et al., CVPR'17]

(a) Input: Video & Query (b) Algorithm: Sequential & Hierarchical Determinantal Point Process (SH-DPP) (c) Output: Summary

Personalization of video summarizers

[Sharghi et al., ECCV'16, CVPR'17, ECCV'18]

Webly supervised learning

Abstract form: unsupervised domain adaptation (DA)

Source

$$D_{\mathcal{S}} = \{(x_m, y_m)\}_{m=1}^{\mathsf{M}} \sim P_{\mathcal{S}}(X, Y)$$

Target
$$D_{\mathcal{T}} = \{(x_n, ?)\}_{n=1}^{\mathsf{N}} \sim P_{\mathcal{T}}(X, Y)$$

Different distributions

Objective

Learn models to work well on target

Popular methods

Correcting **sampling** bias

Data selection for DA

Correcting **sampling** bias

[Sethy et al., '09] [Sugiyama et al., '08] [Huang et al., Bickel et al., '07] [Sethy et al., '06]

[Shimodaira, '00]

 $P_{\mathcal{L}}(\text{landmarks}) \approx P_{\mathcal{T}}(\text{target})$ $\min_{\text{landmarks}} d(P_{\mathcal{L}}, P_{\mathcal{T}})$

Data selection for DA

Landmarks are labeled source instances distributed similarly to the target domain.

Source

[Gong et al., ICML'13]

Data selection for DA

Landmarks are labeled source instances distributed similarly to the target domain.

Source

Identifying landmarks:

 $P_{\mathcal{L}}(\text{landmarks}) \approx P_{\mathcal{T}}(\text{target})$ $\min_{\text{landmarks}} d(P_{\mathcal{L}}, P_{\mathcal{T}})$

[Gong et al., ICML'13]

Kernel mean embedding of distributions

 μ maps distribution P to Reproducing Kernel Hilbert Space μ is injective if $\phi(\cdot)$ is characteristic

[Müller'97,Gretton et al.'07,Sriperumbudur et al.'10]

Kernel mean embedding of distributions

Empirical kernel embedding:

$$\hat{\mu}[P] = \frac{1}{\mathsf{n}} \sum_{i=1}^{\mathsf{n}} \phi(x_i), \quad x_i \sim P$$

[Müller'97, Gretton et al.'07, Sriperumbudur et al.'10]

Identifying landmarks by matching kernel means

Integer programming

$$\min_{\{\alpha_m\}} \left\| \frac{1}{\sum_i \alpha_i} \sum_{m=1}^{\mathsf{M}} \alpha_m \phi(x_m) - \frac{1}{\mathsf{N}} \sum_{n=1}^{\mathsf{N}} \phi(x_n) \right\|_{\mathcal{H}}^2$$

where

 $\alpha_m = \begin{cases} 1 & \text{if } x_m \text{ is a landmark wrt target} \\ 0 & \text{else} \end{cases}$ $m = 1, 2, \cdots, \mathsf{M}$

Other details

Convex relaxation

Recovering
$$\alpha_m^{\star}$$
 from $\beta_m^{\star} (= \frac{\alpha_m}{\sum_i \alpha_i})$

Multi-scale analysis

Class balance constraint

How landmarks look like?

Summary

Landmarks [Gong et al., ICML'13]

- Labeled source instances, distributed similarly to target
- Better approximation of discriminative loss of target
- Automatically identifying landmarks
- Benefiting other adaptation methods

Outline

Web data with noisy labels Hard to rectify wrong labels Easier to remove wrong labels

Web data with accurate labels

3D videos/movies

Web data of multi-modalities

Web images vs. Web videos

Semi-sup. Learning WGAN

Curriculum learning / domain adaptation

Web videos are often redundant, sometimes misleading

Pizza Tossing

Web images are informative for activity detection, and noisy

Bench Press

Pizza Tossing

Pruning by mutually voting

Query-relevant Web images and video frames are alike;

An irrelevant Web image or video frame is irrelevant in its own way.

(c) Pizza Tossing

Pruning by mutually voting

Query-relevant Web images and video frames are alike;

An irrelevant Web image or video frame is irrelevant in its own way.

(a) Basketbal Dunk

Pruning by mutually voting

Query-relevant Web images and video frames are alike;

An irrelevant Web image or video frame is irrelevant in its own way.

(b) Bench Press

Mutually vote by matching kernel means Landmark video frames $\min_{\alpha,\beta\in\{0,1\}} \left\| \frac{1}{\sum_{m} \alpha_{m}} \sum_{m'} \alpha_{m'} \phi(I_{m}) - \frac{1}{\sum_{n} \beta_{n}} \sum_{m'} \beta_{m'} \phi(F_{m}) \right\| + \mathcal{R}(\beta)$ Landmark images $\alpha_m = \begin{cases} 1 & \text{if } I_m \text{ is similar to selected video frames} \\ 0 & \text{else} \end{cases}$

 $\mathcal{R}(\beta) =$ Reconstruct video from the selected video frames

Experimental results on UCFI0I

Ours 69.3 ← SVM trained from *Ours* 69.3 ← *mutually pruned Google labeled* Web images & Web videos.

Experimental results on UCFI0I

Table 1: Comparison rest	Sophisticated model		
Method	Accuracy (%)	bruned and labeled	
Karpathy et al. [20]	65.4	training videos.	
LRCN [7]	71.1	0	
Spatial stream net. $[29]$	73.0		
LSTM composite $[34]$	75.8	Motion, or	
C3D [40]	82.3	temporal features	
IDT + FV [41]	87.9	SVM trained from	
Ours	69.3 	mutually pruned	
		Google labeled	

Web images & Web videos.

Web for visual recognition

Web data with noisy labels Hard to rectify wrong labels Easier to remove wrong labels

Web data with accurate labels

3D videos/movies

Web data of multi-modalities Web images vs.Web videos Semi-sup. Learning WGAN

Curriculum learning / domain adaptation

Kernel mean matching

Web for visual recognition

Web for supervised video summarization

Query-focused supervised video summarization

Web for visual recognition

Web for supervised video summarization $1. \nabla \cdot \mathbf{D} = \rho_{v}$ $2. \nabla \cdot \mathbf{B} = 0$ $3. \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $4. \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$ Web for X (VQA, 3D reconstruction, etc.)

[1] A Semi-Supervised Two-Stage Approach to Learning from Noisy Labels.Y Ding, L Wang, D Fan, & B Gong. WACV 2018.

[2] Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect. X Wei*, B Gong*, Z Liu, & L Wang. ICLR 2018.

[3] Geometry-Guided CNN for Self-Supervised Video Representation Learning. C Gan, B Gong, K Liu, H Su, & L Guibas. CVPR 2018.

[4] Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes.Y Zhang, P David, & B Gong. ICCV 2017.

 [5] Connecting the Dots with Landmarks: Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation. B Gong, K Grauman, & F Sha. ICML 2013.

[6] Webly-supervised Video Recognition by Mutually Voting for Relevant Web Images and Web Video Frames. C Gan, C Sun, L Duan, & B Gong. ECCV 2016.

[7] Query-Focused Video Summarization: Dataset, Evaluation, and A Memory Network Based Approach. A. Sharghi, J Laurel, & B Gong. CVPR 2017.