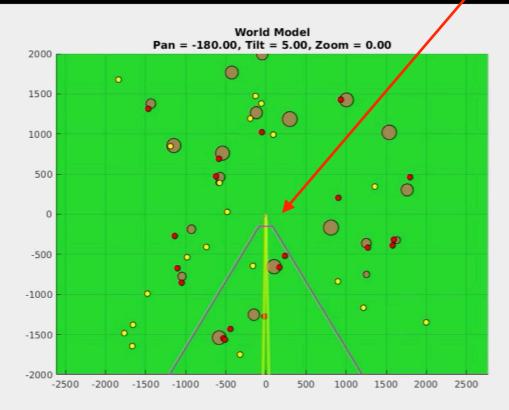
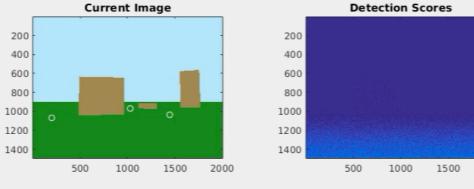
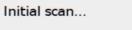
Curriculum Domain Adaptation: Using Simulation for Real

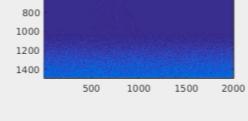
Boqing Gong

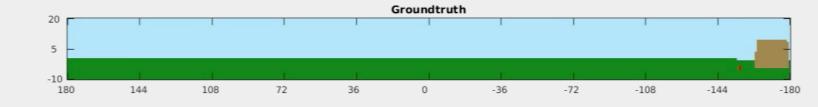
An intelligent robot

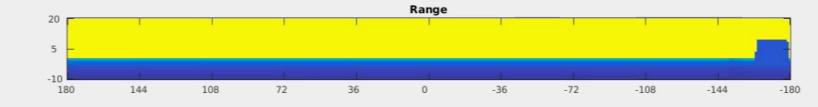


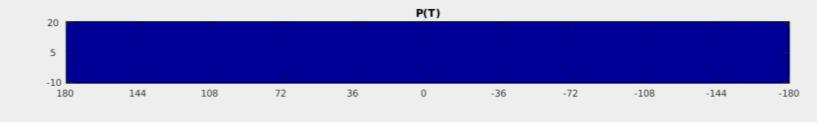


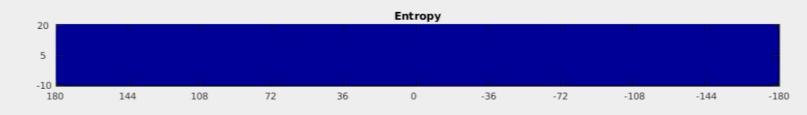










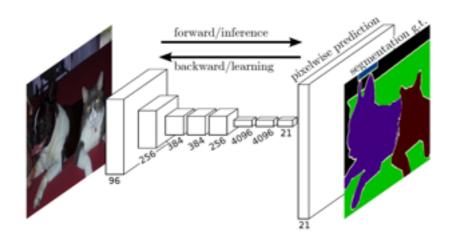


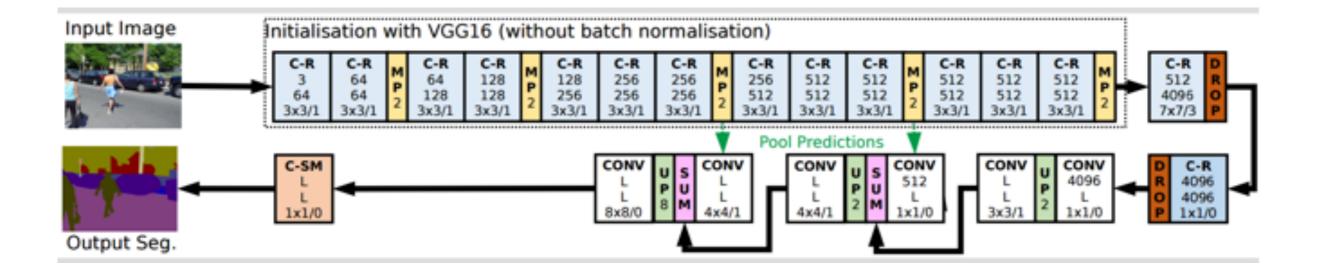
Semantic segmentation of urban scenes

Assign each pixel a semantic label An appealing application: **self-driving**

Image credit: https://www.cityscapes-dataset.com/

Triumphal approach: CNNs convolutional neural networks





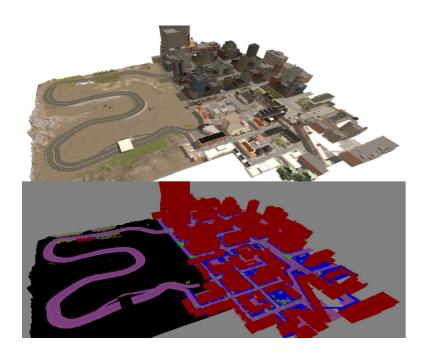
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*.

To teach/train CNNs to segment images and videos

About 1.5 hrs to label one such image!

Cityscapes: largest publicly available dataset 30k images captured from 50 cities Only 5k are well labeled thus far

Labeling-free training data by simulation



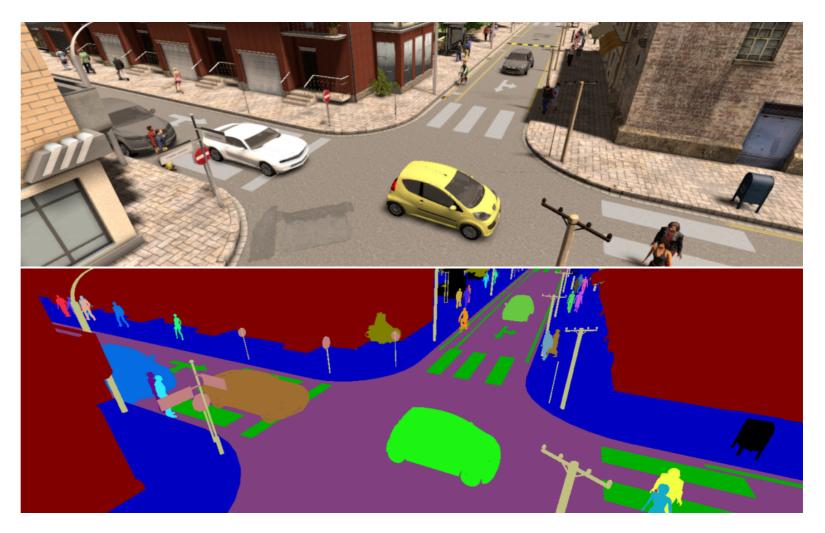
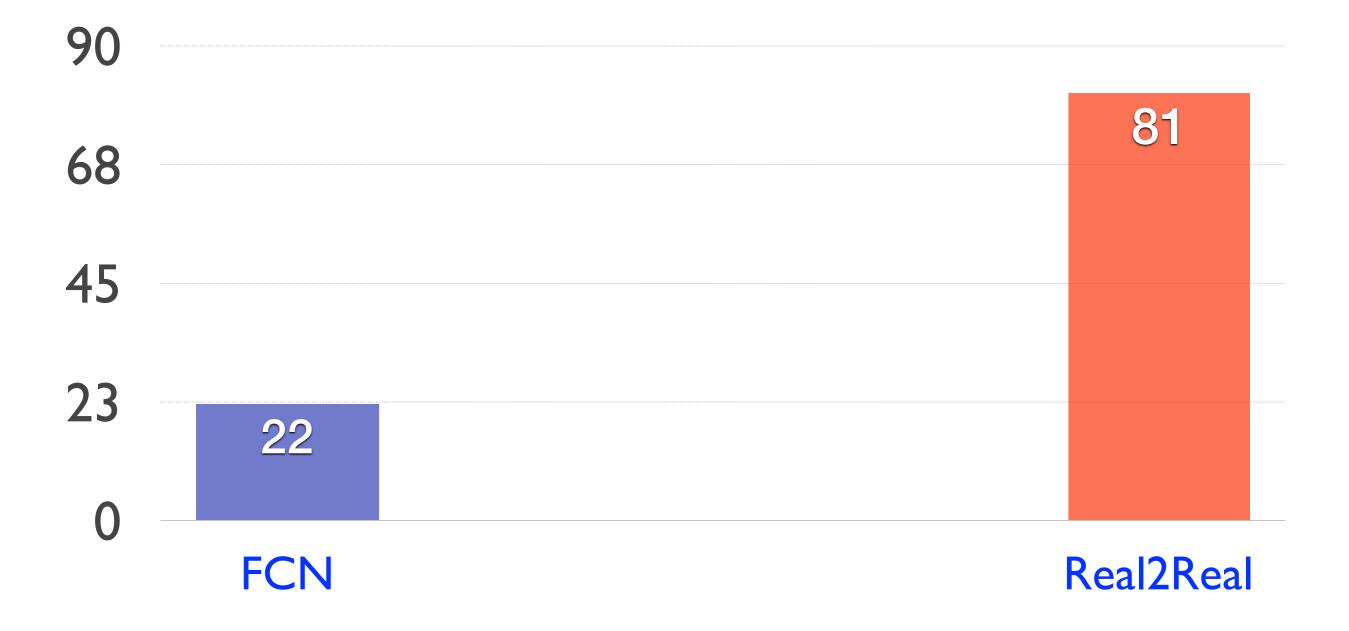


Image credit: http://synthia-dataset.net/

Simulation to real world: catastrophic performance drop



The perils of mismatched domains

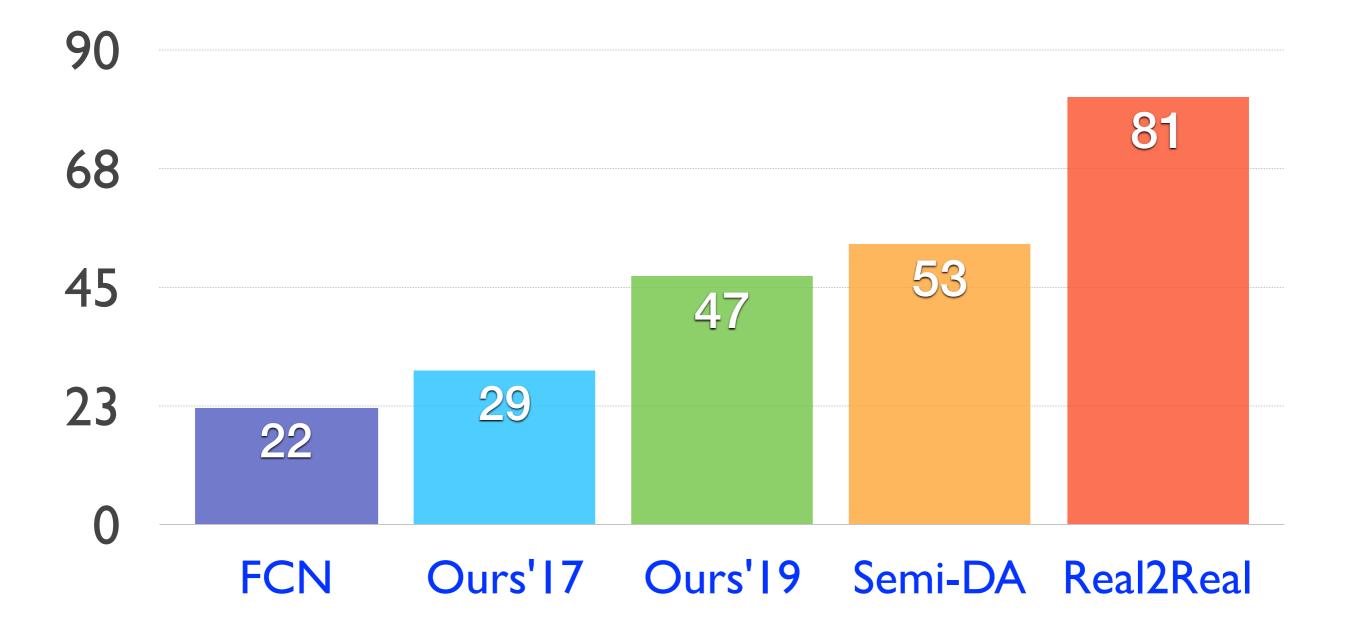
Cause: standard assumption in machine learning Same underlying distribution for training and testing

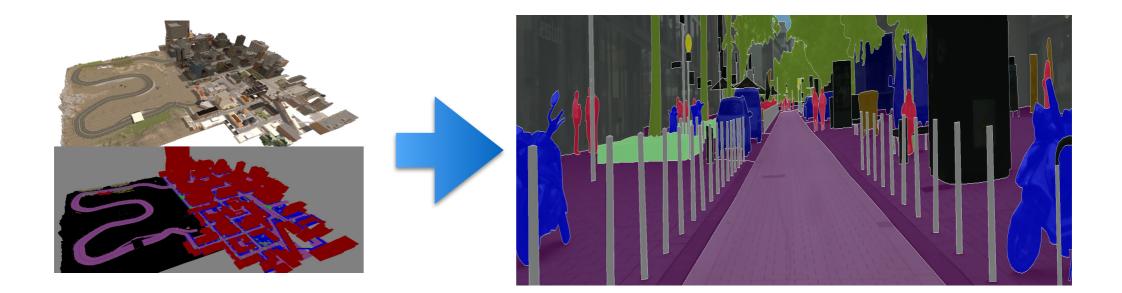
Consequence:

Poor cross-domain generalization

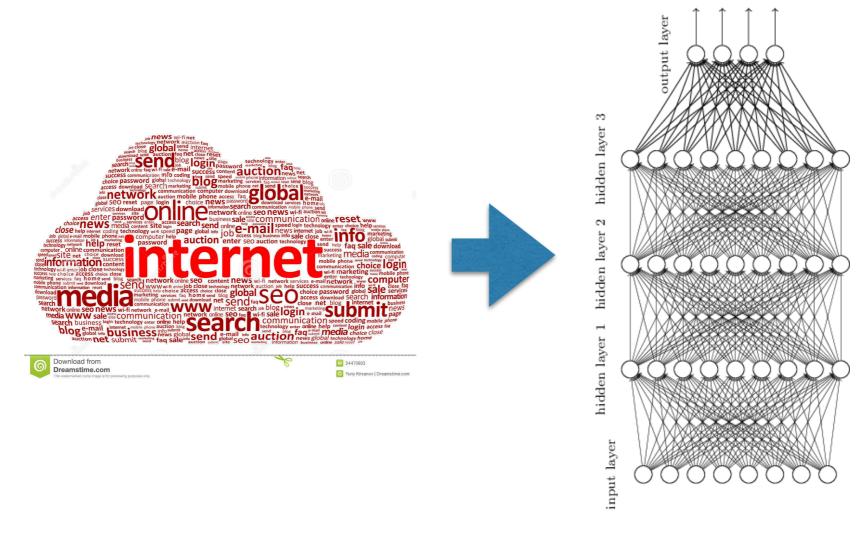
Brittle systems in dynamic and changing environment

Simulation to real world: closing the performance gap?

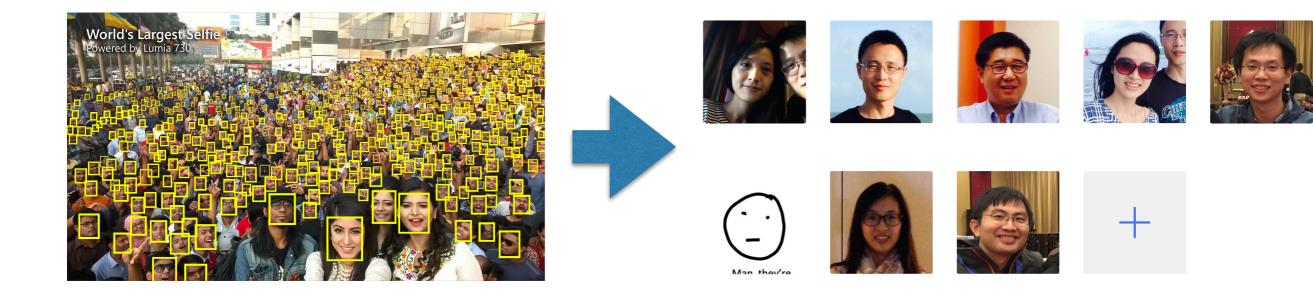




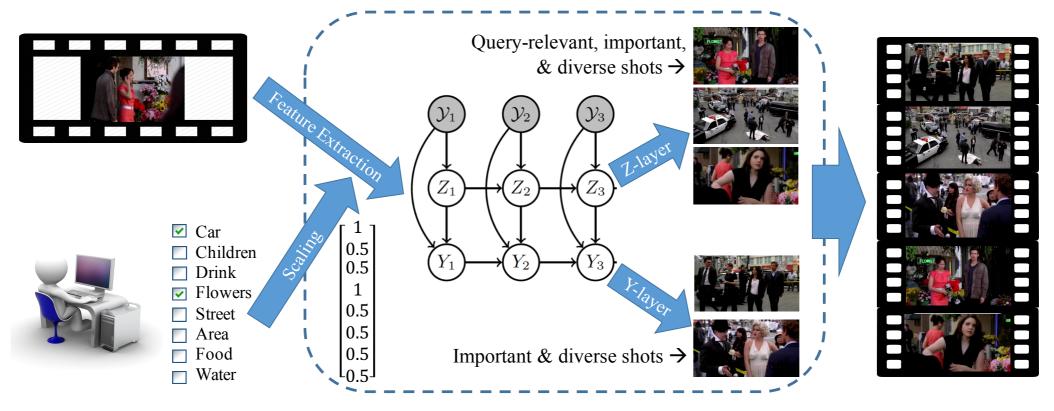
Synthetic imagery \rightarrow Real photos



Webly supervised learning

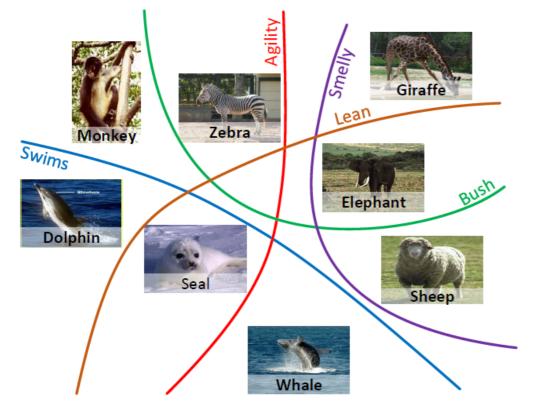


Adapting face detector to a user's album



(a) Input: Video & Query (b) Algorithm: Sequential & Hierarchical Determinantal Point Process (SH-DPP) (c) Output: Summary

Personalization of video summarizers



Middle-level concepts to describe objects, faces, etc.

Shared by different categories

Attribute detection

Abstract form: unsupervised domain adaptation (DA)

Setup

Source domain (with labeled data) $D_{S} = \{(x_m, y_m)\}_{m=1}^{M} \sim P_{S}(X, Y)$ Target domain (no labels for training)

$$D_{\mathcal{T}} = \{ (x_n, \mathbf{?}) \}_{n=1}^{\mathsf{N}} \sim P_{\mathcal{T}}(X, Y)$$

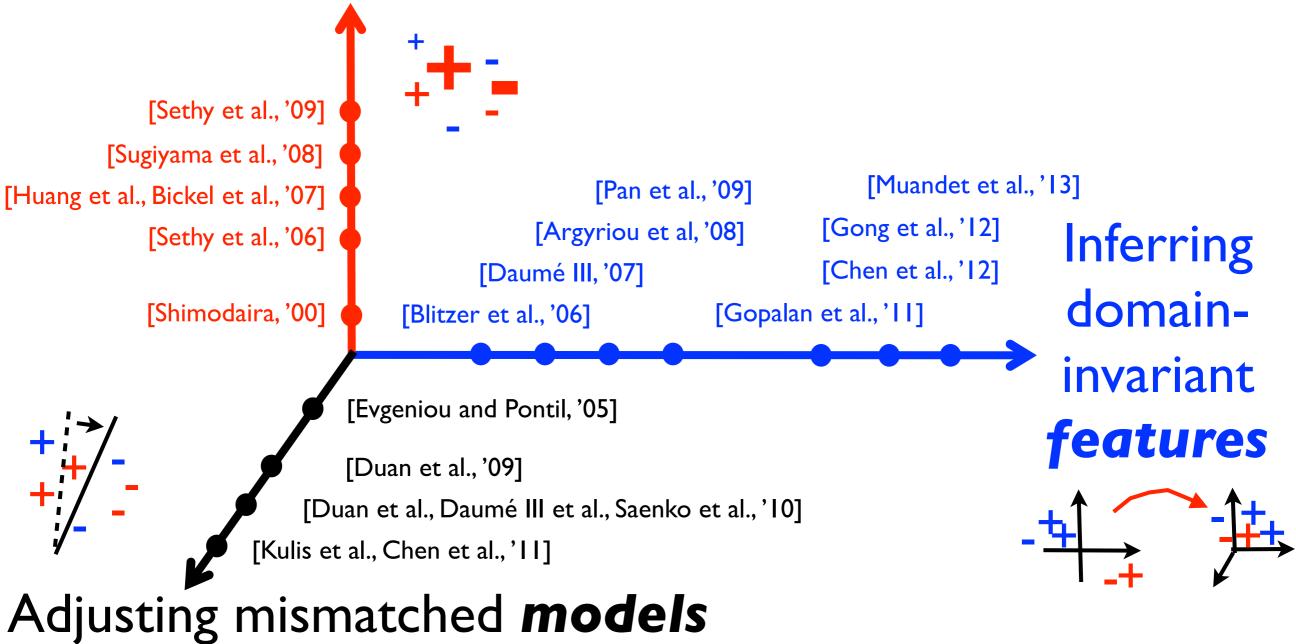
Objective

Different distributions

Learn models to work well on target

This talk

Correcting **sampling** bias



This talk

Correcting **sampling** bias

[Sethy et al., '09] [Sugiyama et al., '08] [Huang et al., Bickel et al., '07] [Sethy et al., '06]

[Shimodaira, '00]

 $P_{\mathcal{L}}(\text{landmarks}) \approx P_{\mathcal{T}}(\text{target})$ $\min_{\text{landmarks}} d(P_{\mathcal{L}}, P_{\mathcal{T}})$

Selecting most adaptable source instances

Landmarks are labeled source instances distributed similarly to the target domain.

Source

Selecting most adaptable source instances

Landmarks are labeled source instances distributed similarly to the target domain.

<image>

Source

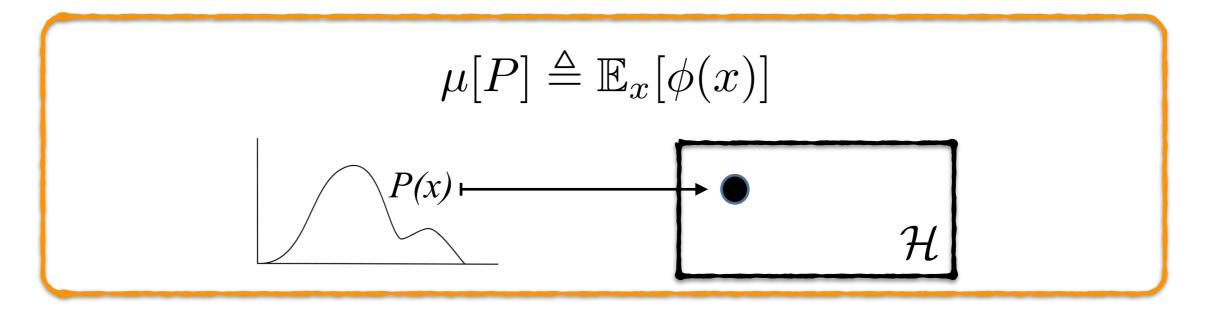
Target

Identifying landmarks:

 $P_{\mathcal{L}}(\text{landmarks}) \approx P_{\mathcal{T}}(\text{target})$ $\min_{\text{landmarks}} d(P_{\mathcal{L}}, P_{\mathcal{T}})$

[ICML'13]

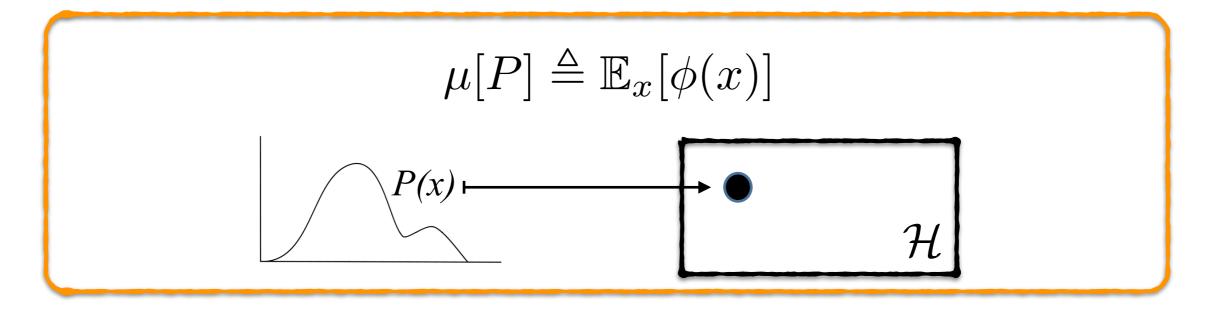
Kernel embedding of distributions



 μ maps distribution P to Reproducing Kernel Hilbert Space μ is injective if $\phi(\cdot)$ is characteristic

[Müller'97, Gretton et al.'07, Sriperumbudur et al.'10]

Kernel embedding of distributions



Empirical kernel embedding:

$$\hat{\mu}[P] = \frac{1}{\mathsf{n}} \sum_{i=1}^{\mathsf{n}} \phi(x_i), \quad x_i \sim P$$

Identifying landmarks by matching kernel embeddings

Integer programming

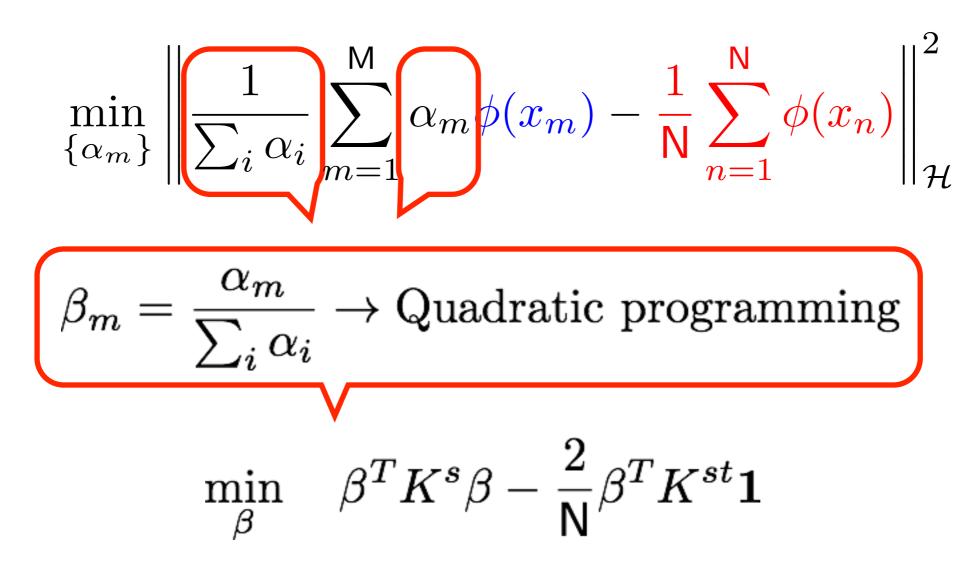
$$\min_{\{\alpha_m\}} \left\| \frac{1}{\sum_i \alpha_i} \sum_{m=1}^{\mathsf{M}} \alpha_m \phi(x_m) - \frac{1}{\mathsf{N}} \sum_{n=1}^{\mathsf{N}} \phi(x_n) \right\|_{\mathcal{H}}^2$$

where

 $\alpha_m = \begin{cases} 1 & \text{if } x_m \text{ is a landmark wrt target} \\ 0 & \text{else} \end{cases}$ $m = 1, 2, \cdots, \mathsf{M}$

Solving by relaxation

Convex relaxation



Other details

Class balance constraint Recovering α_m^{\star} from $\beta_m^{\star} (= \frac{\alpha_m}{\sum_i \alpha_i})$ Multi-scale analysis

(See [Gong et al., ICML'13, IJCV'14] for details)

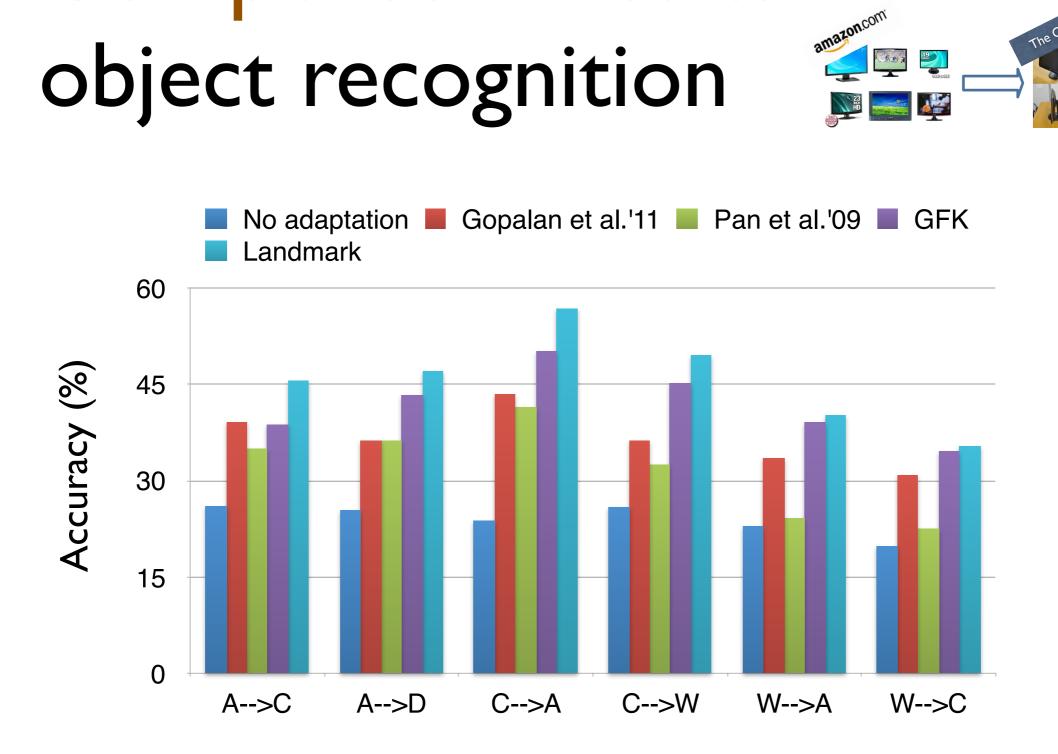
Experimental study

Four vision datasets/domains on visual object recognition

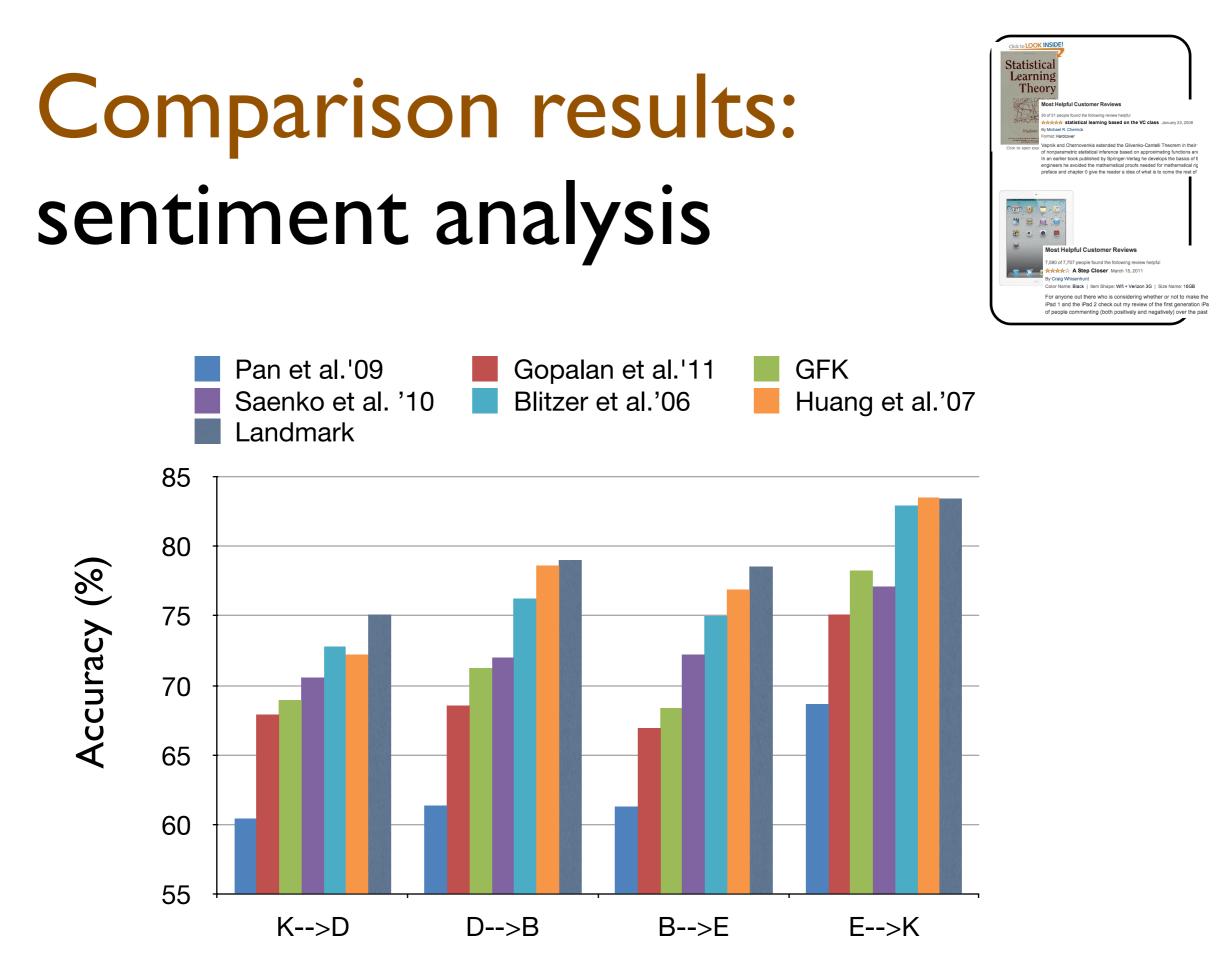
[Griffin et al. '07, Saenko et al. 10']

Four types of product reviews on sentiment analysis

Books, DVD, electronics, kitchen appliances [Biltzer et al. '07]

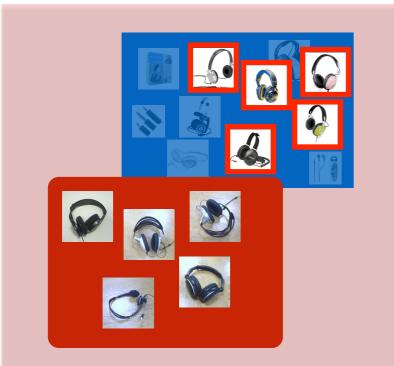


Comparison results:



What do landmarks look like?

Summary - Landmarks



Landmarks [Gong et al., ICML'13]

- Labeled source instances, distributed similarly to target
- Better approximation of discriminative loss of target
- Automatically identifying landmarks
- Benefiting other adaptation methods

Snags in Landmarks

Correcting **sampling** bias

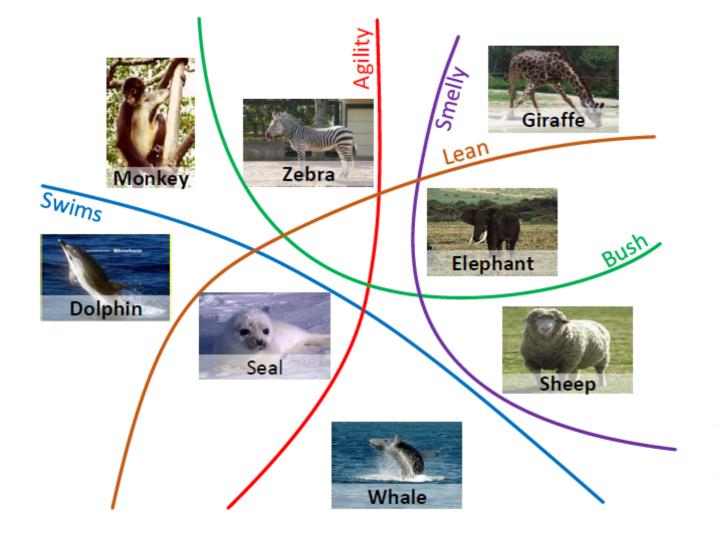
[Sethy et al., '09] [Sugiyama et al., '08] [Huang et al., Bickel et al., '07] [Sethy et al., '06]

[Shimodaira, '00]

$P_{\mathcal{L}}(\text{landmarks}) \approx P_{\mathcal{T}}(\text{target})$ $\min_{\text{landmarks}} d(P_{\mathcal{L}}, P_{\mathcal{T}})$

Large inter-domain discrepancy (seal vs whale)?

What makes a good attribute detector?

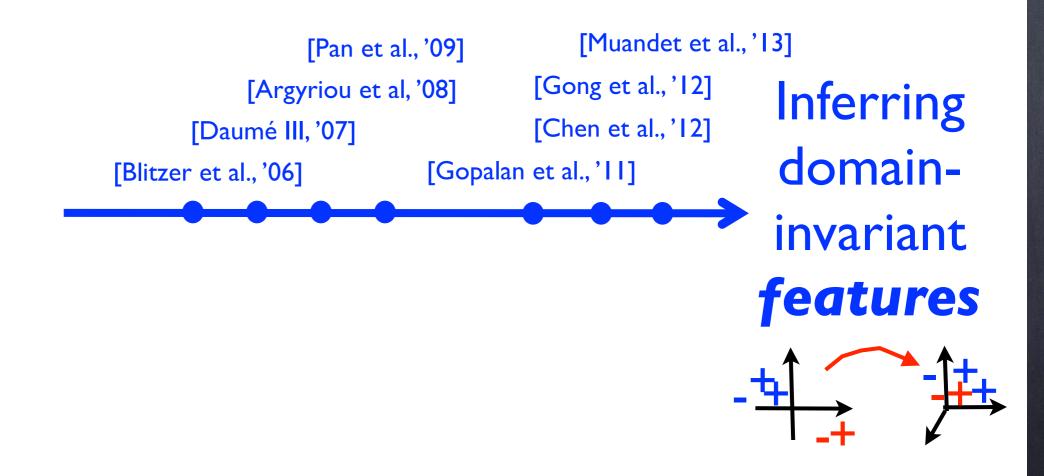


Effective, efficient, ... and generalize well across different activity categories, including previously unseen ones.

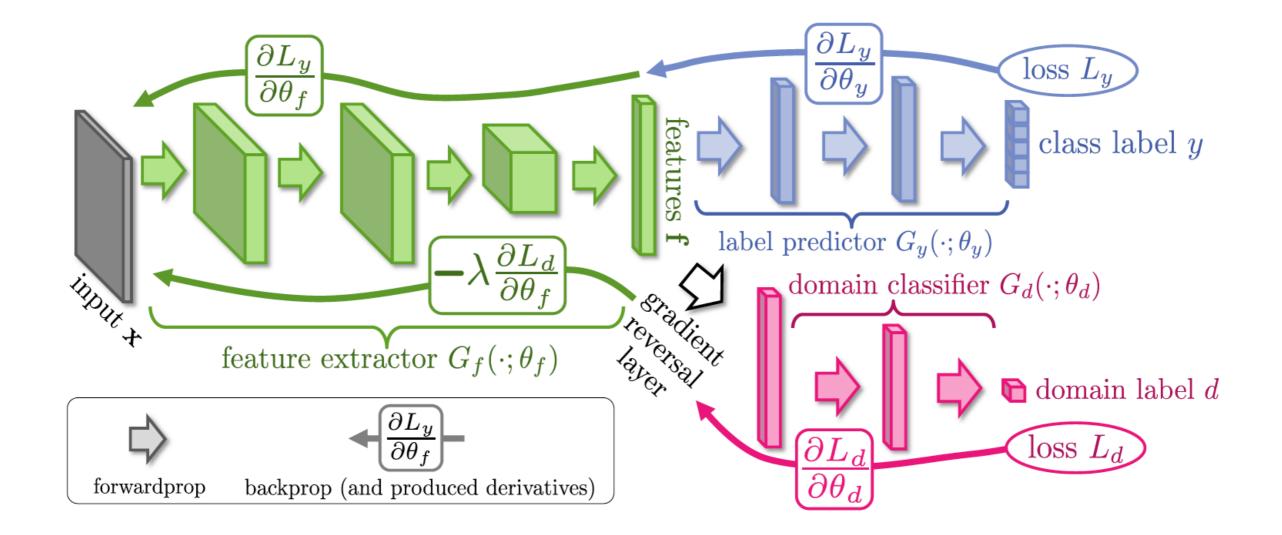
Boundaries between middlelevel attributes and high-level object classes cross each other.

This talk

$$\mathbf{x} \mapsto \mathbf{z}, \quad \text{s.t.}$$
 $P_{\mathcal{S}}(z, y) \approx P_{\mathcal{T}}(z, y)$



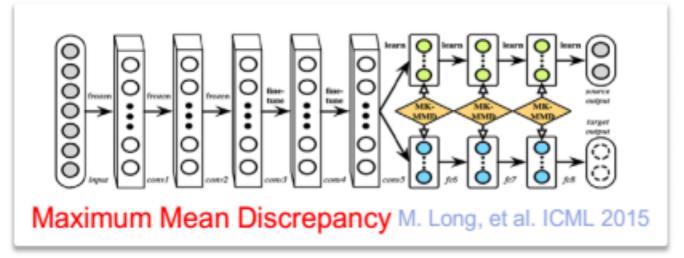
Review: maximizing the domain classification loss

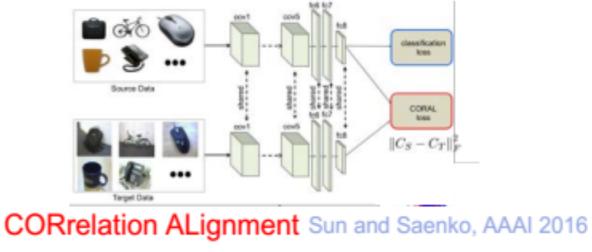


Ganin, Y., & Lempitsky, V. (2014). Unsupervised domain adaptation by backpropagation. *International Conference on Machine Learning*.

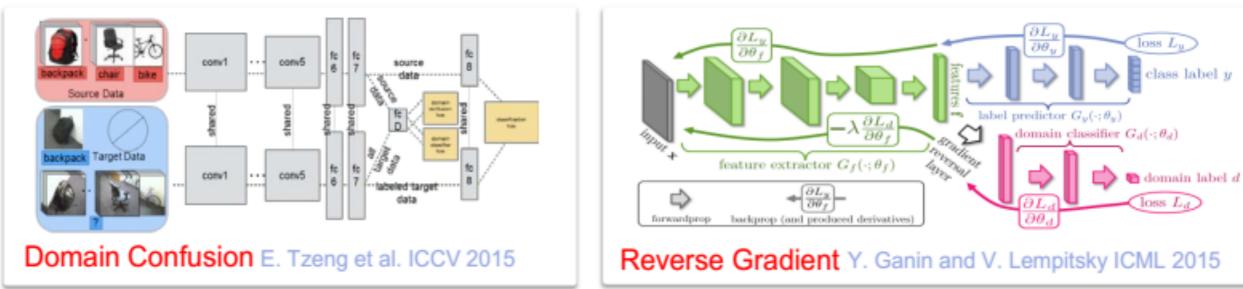
Review

by minimizing distance between distributions, e.g.



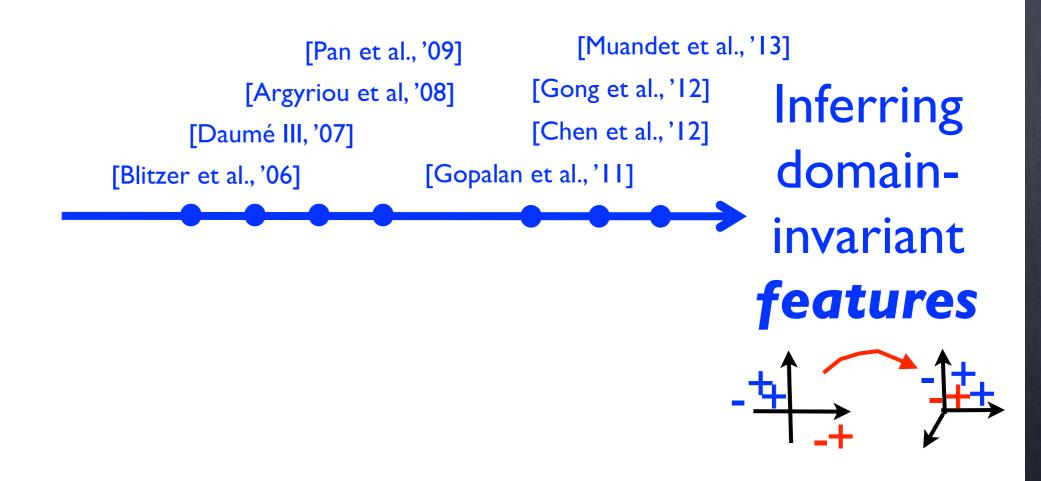


...or by adversarial domain alignment, e.g.



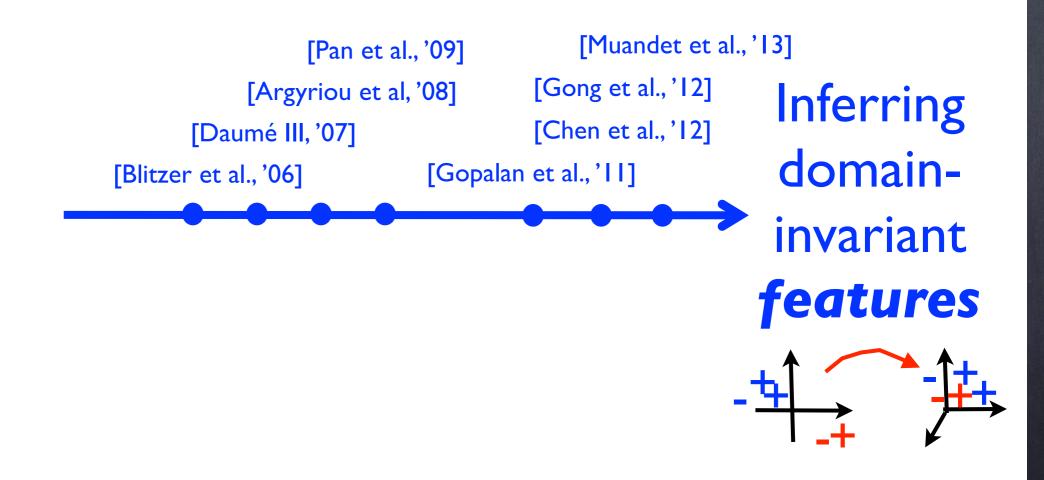
Pros: effective for large inter-domain discrepancy

 $\mathbf{x} \mapsto \mathbf{z}, \quad \text{s.t.}$ $P_{\mathcal{S}}(z, y) \approx P_{\mathcal{T}}(z, y)$

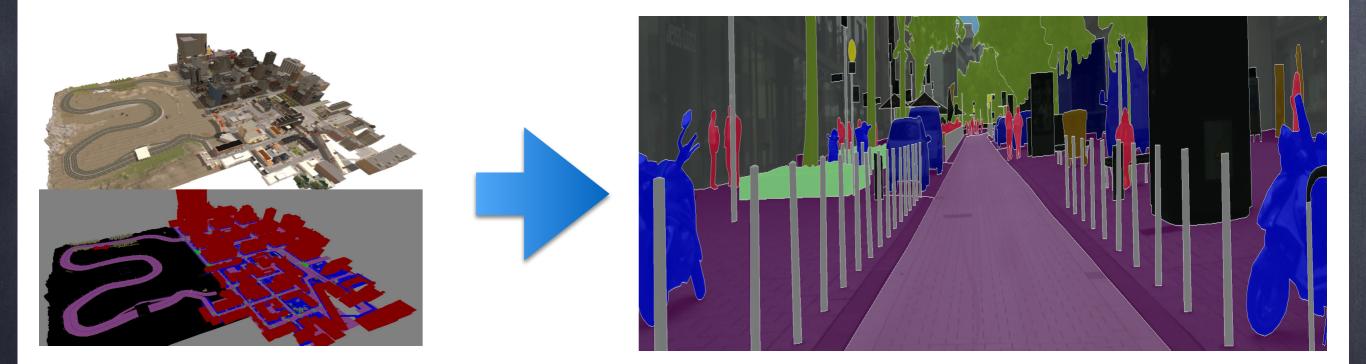


Cons: not discriminative enough for fine-grained tasks

 $\mathbf{x} \mapsto \mathbf{z}, \quad \text{s.t.}$ $P_{\mathcal{S}}(z, y) \approx P_{\mathcal{T}}(z, y)$

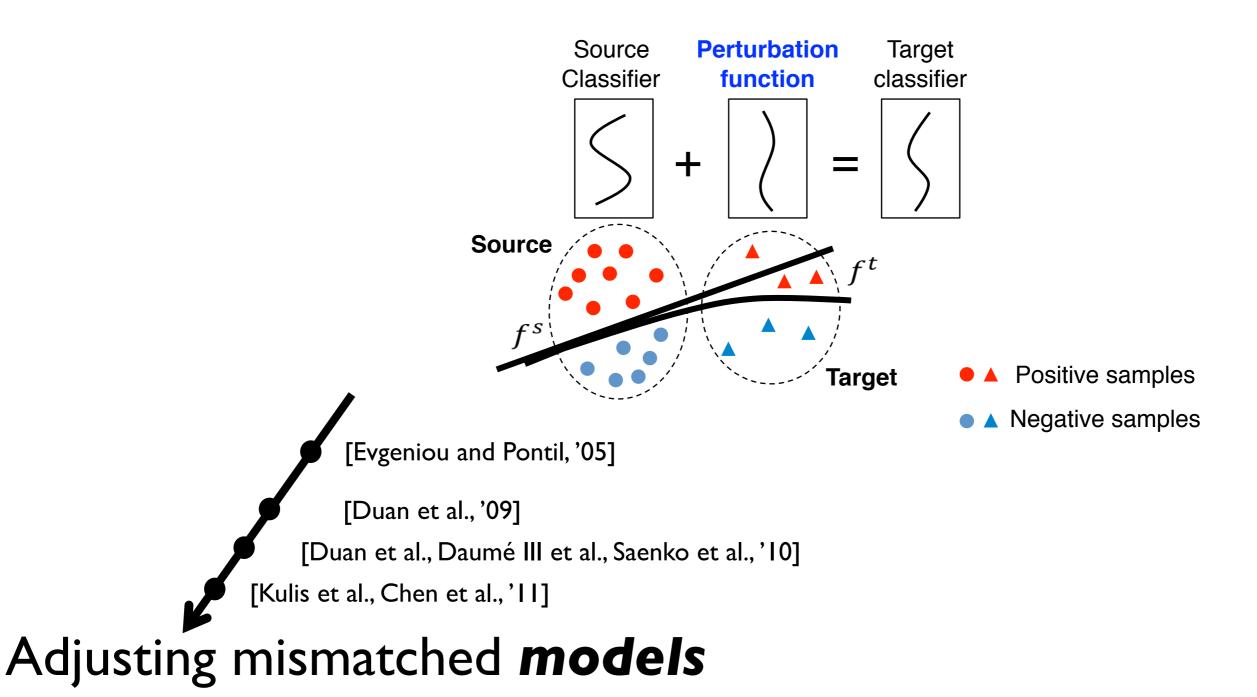


Cons: not discriminative enough for fine-grained tasks



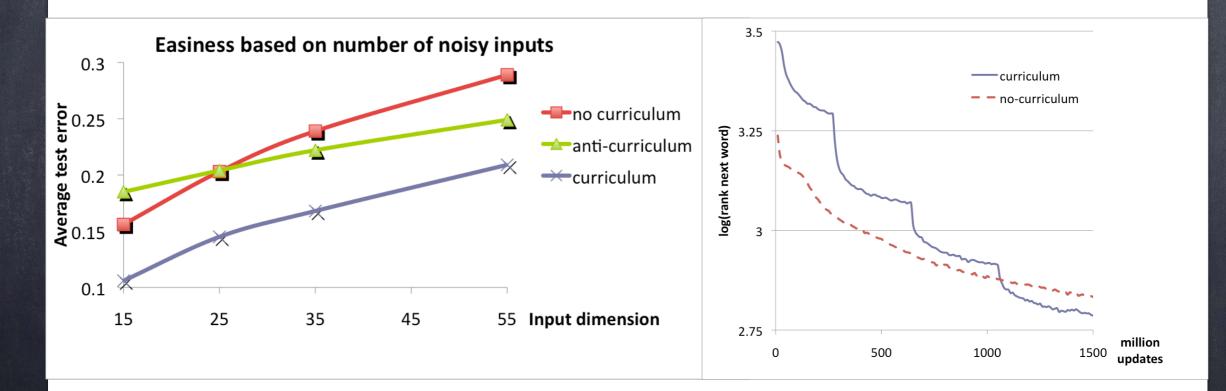
E.g., semantic segmentation

Directly adapt classifiers/models



Detour: Curriculum learning

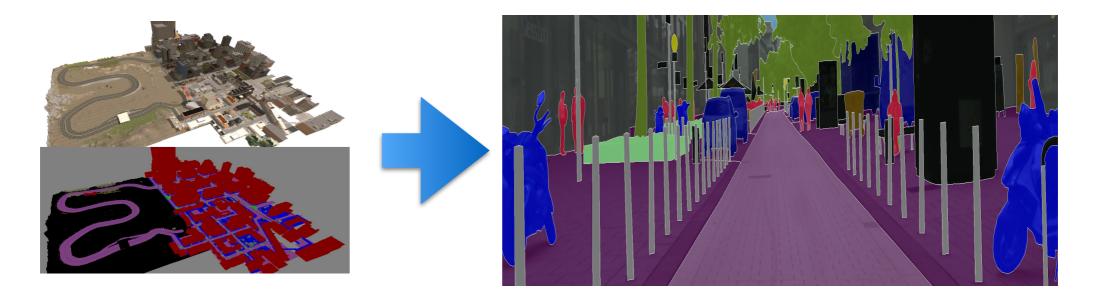
Feed a learning system "easy" examples first Gradually introduce more difficult ones



[Bengio et al., ICML'09]

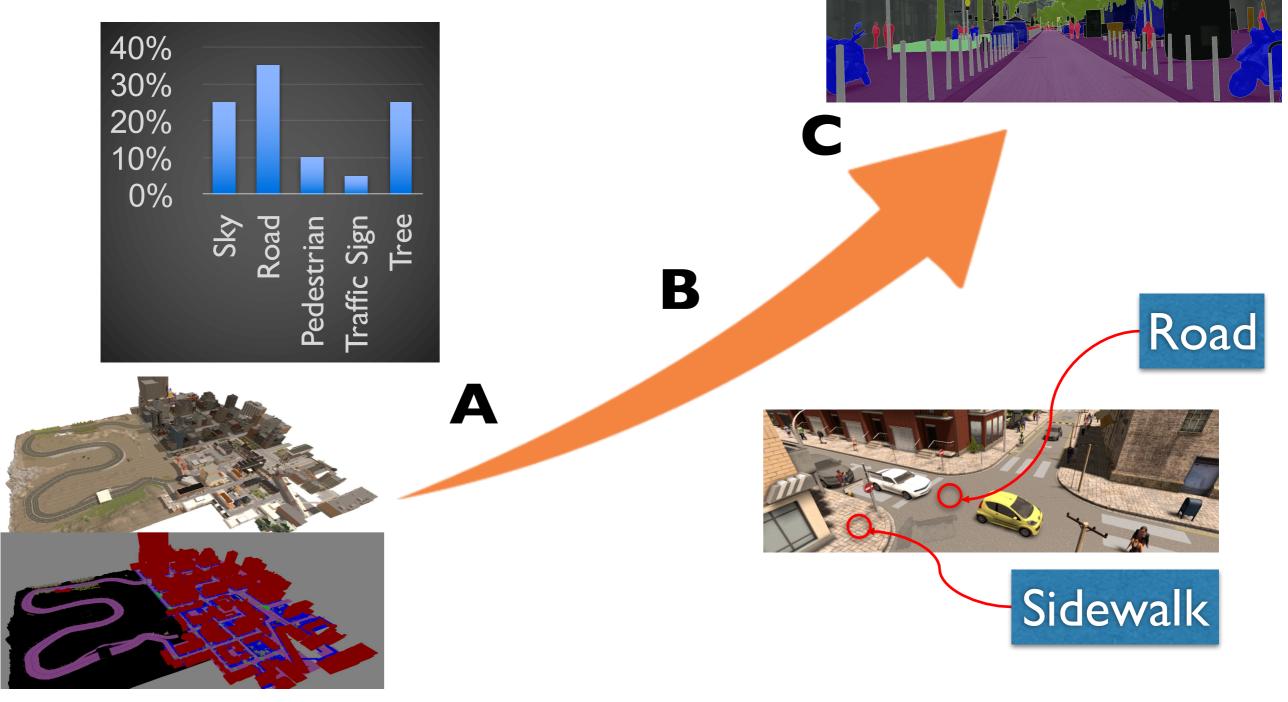
Curriculum domain adaptation

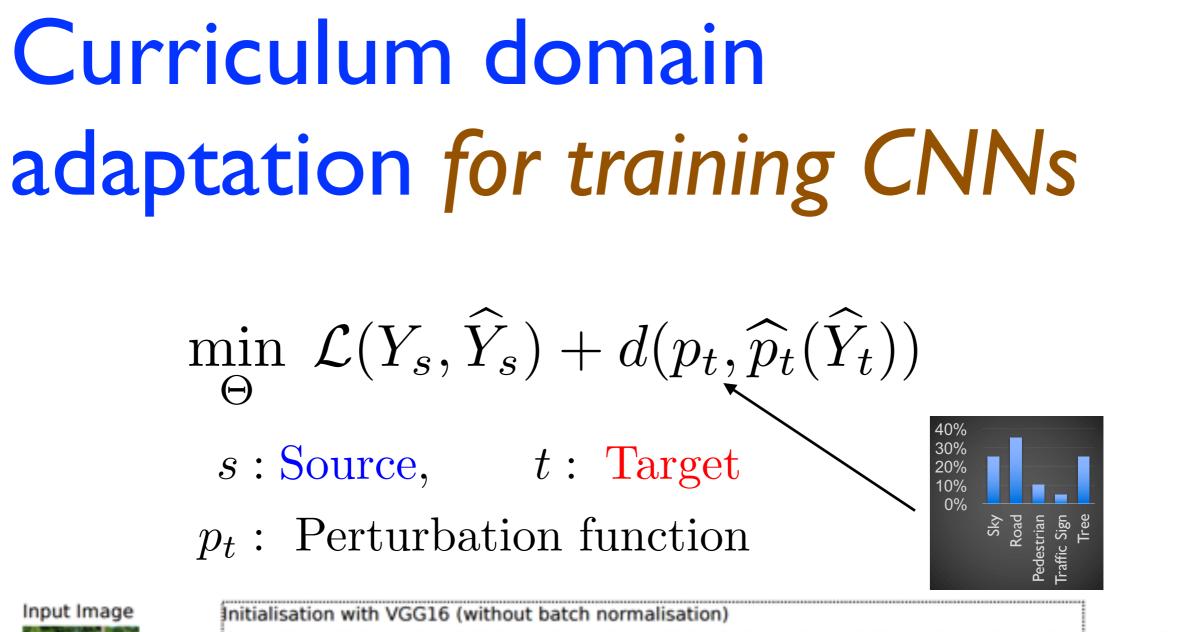
Feed a learning system "easy" **tasks** first The solutions to them find good local optima, acting as an effective regularizer

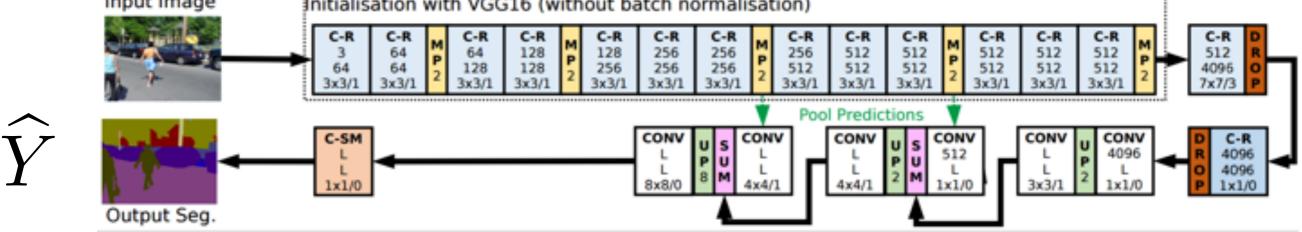


Synthetic imagery \rightarrow Real photos

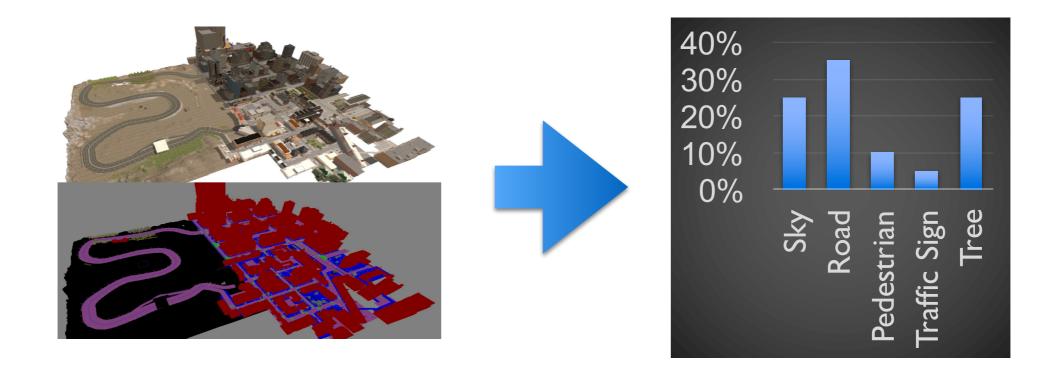
Curriculum domain adaptation





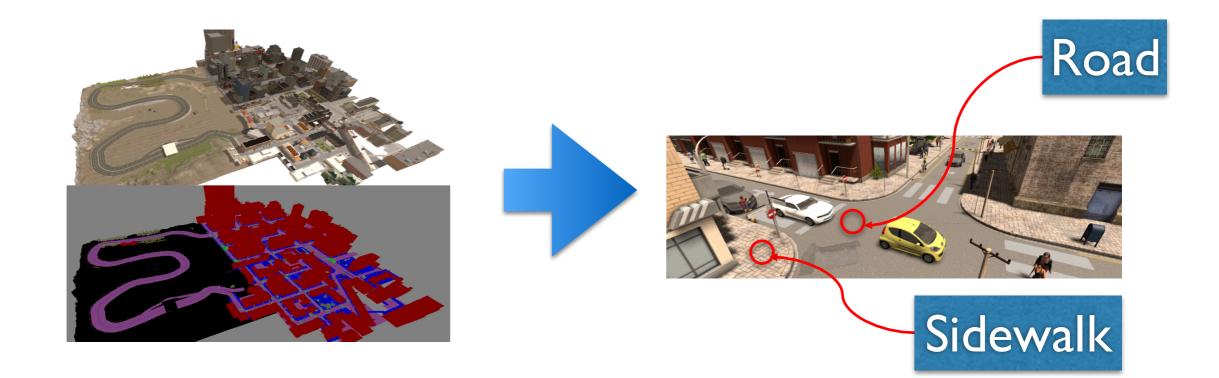


Perturbation functions for semantic segmentation (1)



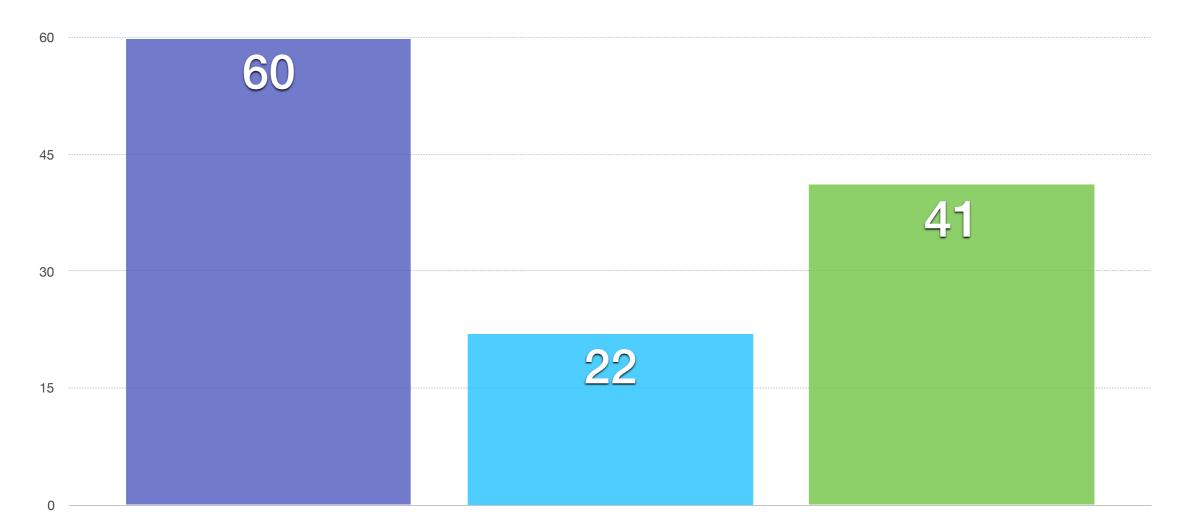
Input: An urban scene image Algorithm: Logistic regression Output: Label distributions

Perturbation functions for semantic segmentation (2)



Input: An urban scene image Algorithm: Super-pixel + Logistic regression Output: Labels of some super-pixels

Simulation to real world: catastrophic performance drop

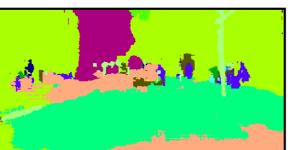


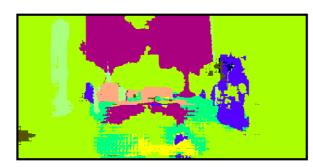
Simulation \rightarrow Sim Sim \rightarrow Cityscapes Adaptation

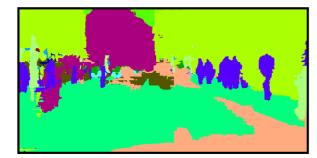
[Zhang et al., ICCV'I7]

Image

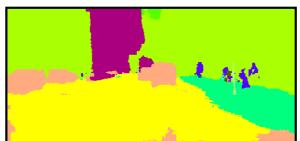
Baseline

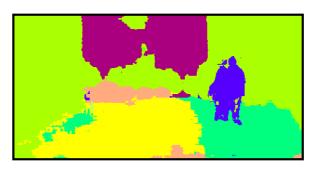




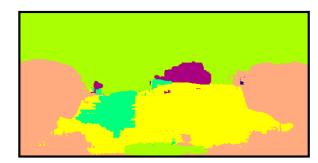


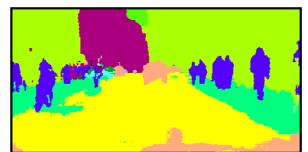
Ours

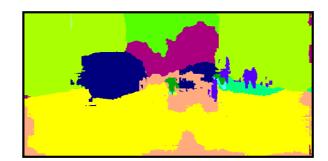




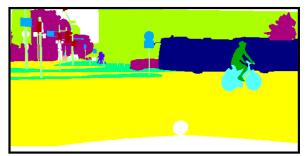






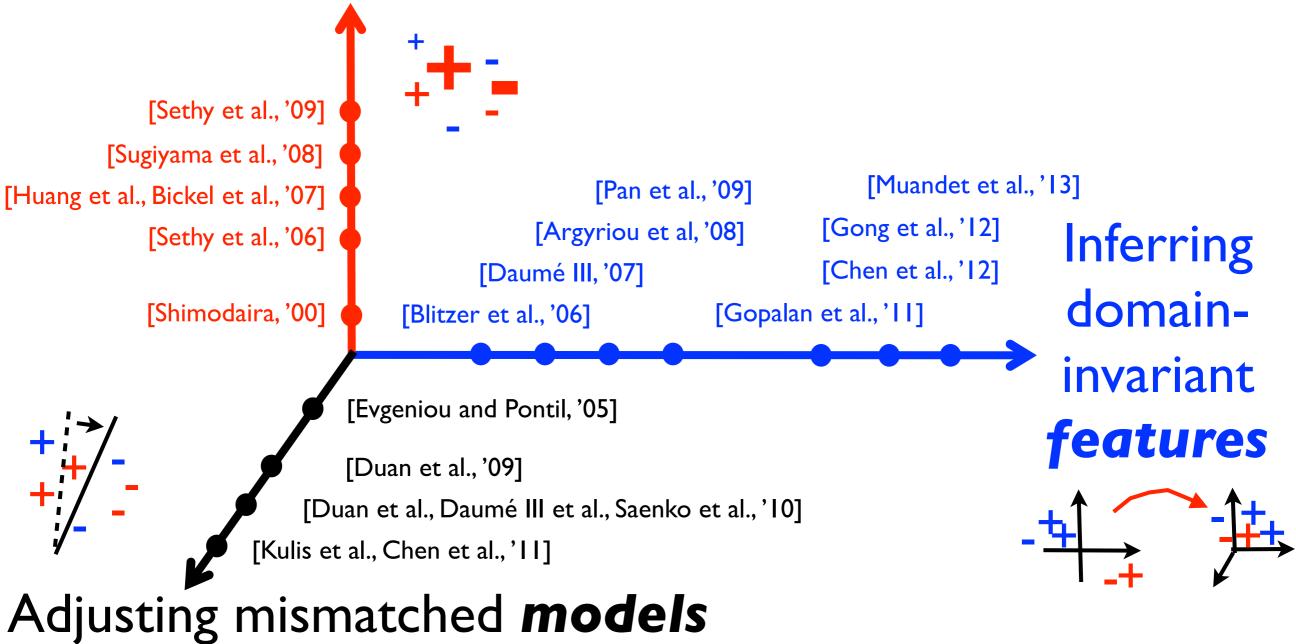


Groundtruth

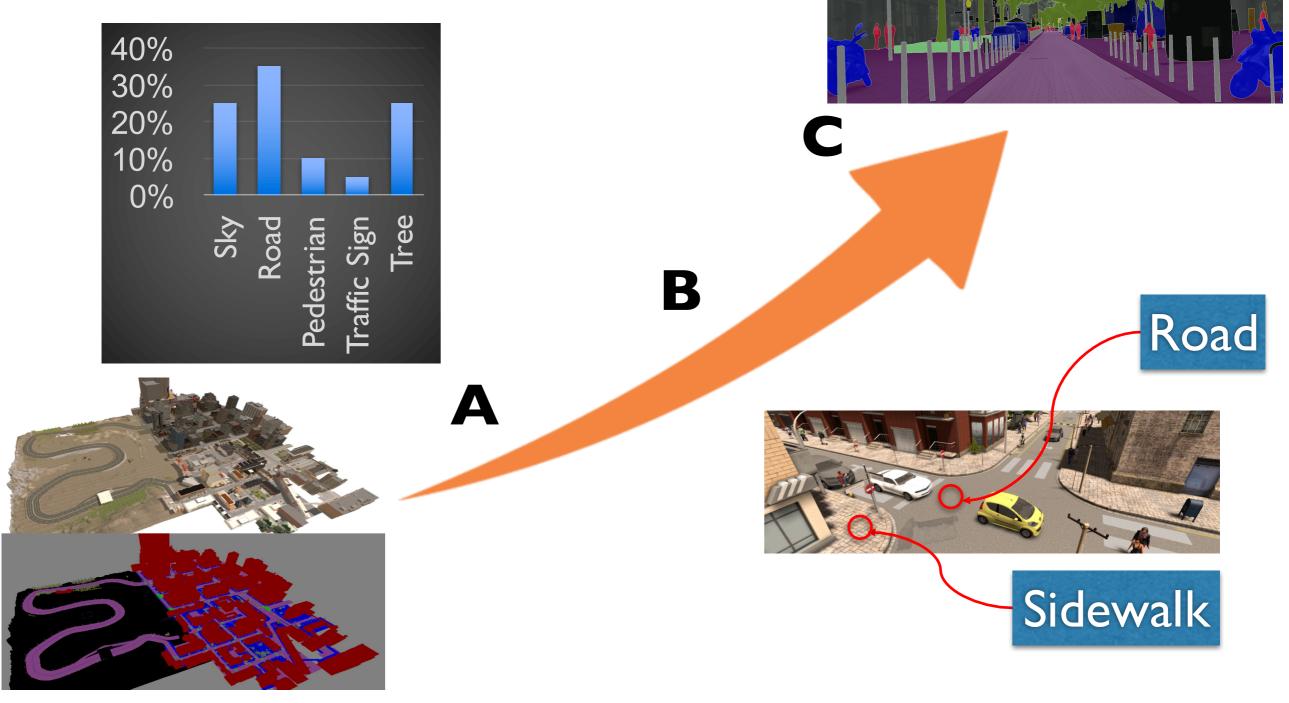


This talk

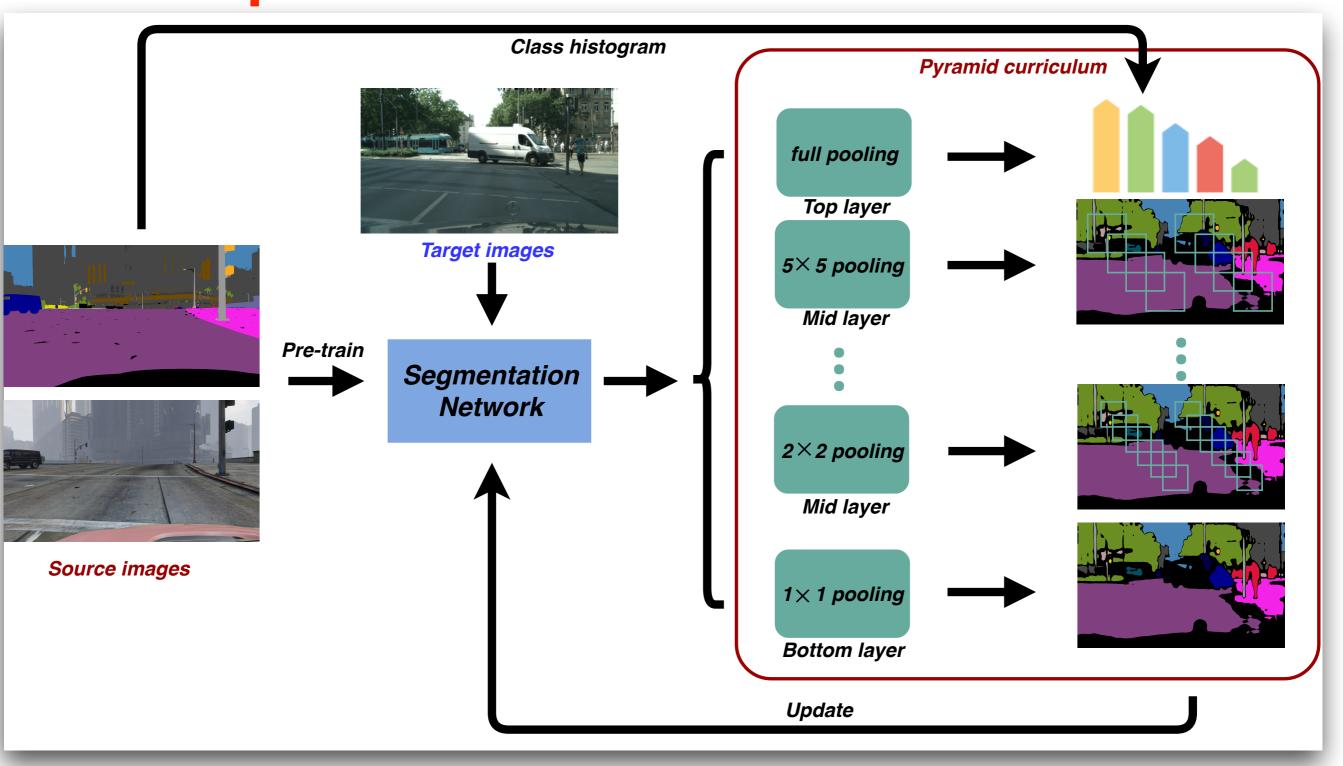
Correcting **sampling** bias



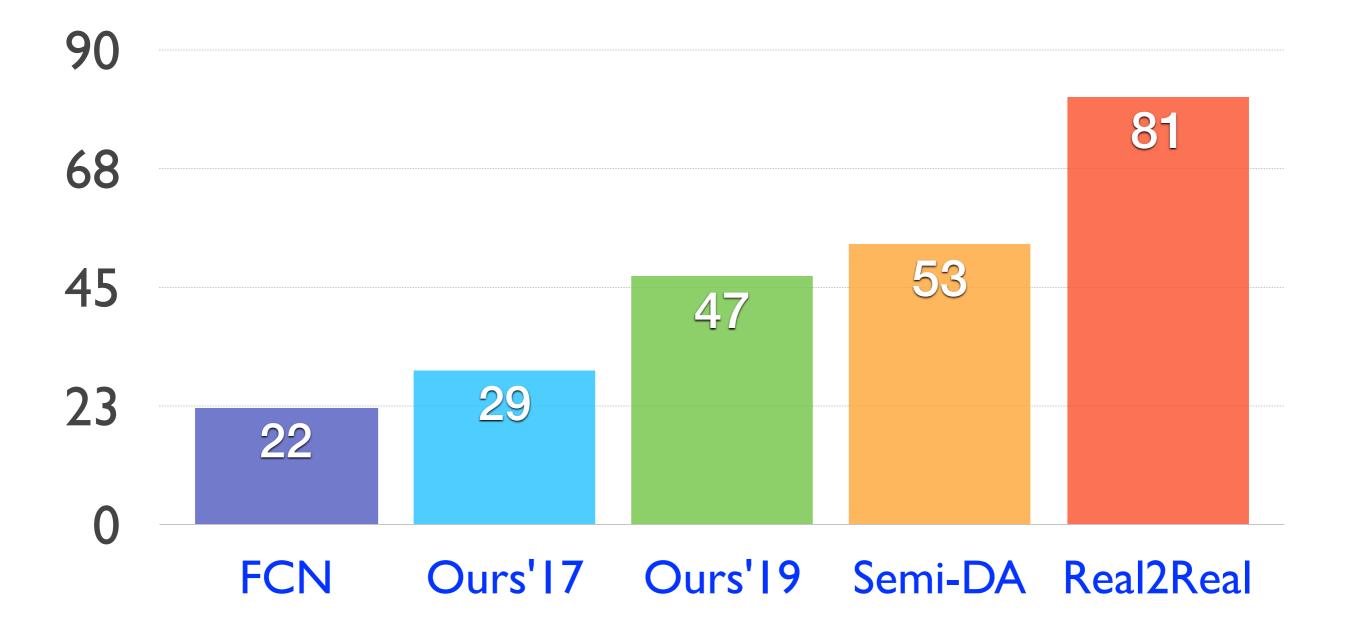
Curriculum domain adaptation



Pyramid Curriculum domain adaptation



Simulation to real world: closing the performance gap?



Domain adaptation: key to use simulation "for real"

Domain-invariant features Importance sampling of data Adapt background models etc.

Curriculum domain adaptation Style transfer, etc.

Inferring

features

Correcting sampling bias

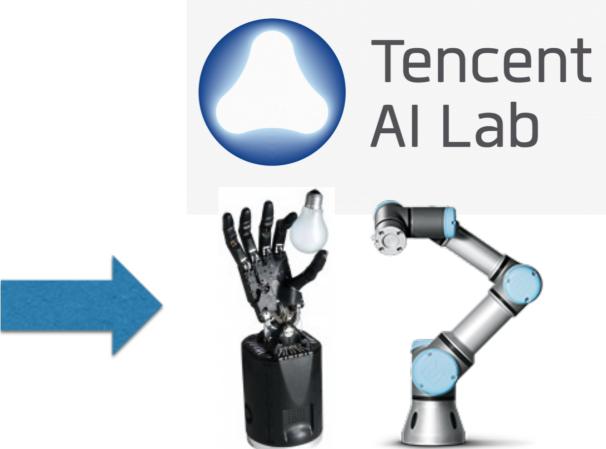
Adjusting mismatched **models**

[Sethy et al., 'O

Simulation to reality for segmentation, detection, dynamics planning & control, etc.

Domain adaptation: key to use simulation "for real"





Simulation to reality for segmentation, detection, Dynamics planning & control, etc.

Acknowledgements

U. Southern California: Fei ShaU. Texas at Austin: Kristen Grauman

Yang Zhang, Phil David, Qing Lian, and Lixin Duan

