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An intelligent robot



Image credit: https://www.cityscapes-dataset.com/

Semantic segmentation of 
urban scenes

Assign each pixel a semantic label

An appealing application: self-driving



Triumphal approach: CNNs
convolutional neural networks

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.



Image credit: https://www.cityscapes-dataset.com/

To teach/train CNNs to 
segment images and videos

About 1.5 hrs to label one such image!

Cityscapes: largest publicly available dataset
30k images captured from 50 cities
Only 5k are well labeled thus far



Labeling-free training data 
by simulation

Image credit: http://synthia-dataset.net/



Simulation to real world: 
catastrophic performance drop

0

23

45

68

90

FCN Real2Real

81

22



Cause:  standard assumption in machine learning

Same underlying distribution for training and testing

Consequence: 

Poor cross-domain generalization

Brittle systems in dynamic and changing 
environment

The perils of 
mismatched domains
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Simulation to real world: 
closing the performance gap?
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Synthetic imagery → Real photos



Webly supervised learning



Adapting face detector to a user’s album



Personalization of  video summarizers
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(a) Input: Video & Query (c) Output: Summary(b) Algorithm: Sequential & Hierarchical Determinantal Point Process (SH-DPP)

Important & diverse shots à

Query-relevant, important, 
& diverse shots à



Attribute detection

Middle-level concepts to describe 
objects, faces, etc.

Shared by different categories



Setup

Source domain (with labeled data)

Target domain (no labels for training)

Objective

Learn models to work well on target

Abstract form: unsupervised 
domain adaptation (DA)

Different distributions

?
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Landmarks are labeled source 
instances distributed similarly to 
the target domain.

Selecting most adaptable 
source instances

Source

Target
[ICML’13]
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Landmarks are labeled source 
instances distributed similarly to 
the target domain.

Identifying landmarks: Source

Target

Selecting most adaptable 
source instances

?
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[ICML’13]



Kernel embedding of 
distributions

µ[P ] , Ex[�(x)]

µ maps distribution P to Reproducing Kernel Hilbert Space

µ is injective if 𝜙(·) is characteristic

H

[Müller’97,Gretton et al.’07,Sriperumbudur et al.’10]

P(x)
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Kernel embedding of 
distributions

µ[P ] , Ex[�(x)]

H

Empirical kernel embedding:  

µ̂[P ] =
1

n

nX

i=1

�(xi), xi ⇠ P

P(x)
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Integer programming

where

Identifying landmarks by 
matching kernel embeddings

min
{↵m}

�����
1P
i ↵i

MX

m=1

↵m�(xm)� 1

N

NX

n=1

�(xn)

�����

2

H

↵m =

⇢
1 if xm is a landmark wrt target
0 else

m = 1, 2, · · · ,M

landmark
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Convex relaxation

Solving by relaxation

min
{↵m}
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Class balance constraint

Recovering      from 

Multi-scale analysis

(See [Gong et al., ICML’13, IJCV’14] for details)

Other details



Four vision datasets/domains on 
visual object recognition

[Griffin et al. ’07, Saenko et al. 10’]

Four types of product reviews on 
sentiment analysis

Books, DVD, electronics, kitchen 
appliances [Biltzer et al. ’07]

Experimental study

The Office



Comparison results: 
object recognition
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Comparison results: 
sentiment analysis
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What do landmarks look like?

Headphone Mug
target

Target
Source

Unselected

Landm
arks
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Landmarks

Summary - Landmarks

• Labeled source instances, 
distributed similarly to target 

• Better approximation of 
discriminative loss of target 

• Automatically identifying 
landmarks 

• Benefiting other adaptation 
methods

[Gong et al., ICML’13]
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Large inter-domain discrepancy (seal vs whale)?

Snags in Landmarks



What makes a good 
attribute detector?

Effective, efficient, … and 
generalize well across different 
activity categories, including 
previously unseen ones.

Boundaries between middle-
level attributes and high-level 
object classes cross each 
other.
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x 7! z, s.t.

PS(z, y) ⇡ PT (z, y)



Ganin, Y., & Lempitsky, V. (2014). Unsupervised domain adaptation by backpropagation. International 
Conference on Machine Learning.

Review: maximizing the 
domain classification loss



Review



Pros: effective for large 
inter-domain discrepancy

Inferring 
domain-
invariant 
features

[Pan et al., ’09]

[Blitzer et al., ’06] [Gopalan et al., ’11]

[Chen et al., ’12][Daumé III, ’07]

[Argyriou et al, ’08] [Gong et al., ’12]

[Muandet et al., ’13]

++
+-

- +- +- +

x 7! z, s.t.

PS(z, y) ⇡ PT (z, y)



Cons: not discriminative 
enough for fine-grained tasks
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E.g., semantic segmentation

Cons: not discriminative 
enough for fine-grained tasks



Adjusting mismatched models

[Evgeniou and Pontil, ’05]

[Duan et al., ’09]

[Duan et al., Daumé III et al., Saenko et al., ’10]

[Kulis et al., Chen et al., ’11]

Positive samples

Negative samples

Source

Source 
Classifier

Perturbation
function

Target
classifier

Target

 

 

+ =

Directly adapt 
classifiers/models



 

Detour: Curriculum 
learning

Feed a learning system “easy” examples first
Gradually introduce more difficult ones

[Bengio et al., ICML’09]

Curriculum Learning

In principle one could argue that di�cult examples
can be more informative than easy examples. Here
the di�cult examples are probably not useful because
they confuse the learner rather than help it establish
the right location of the decision surface. This exper-
iment does not involve a curriculum strategy yet, but
it may help to understand why easier examples could
be useful, by avoiding to confuse the learner.

4.2. Introducing Gradually More Di�cult

Examples Speeds-up Online Training

We train a Perceptron from artificially generated data
where the target is y = sign(w0

xrelevant) and w is sam-
pled from a Normal(0,1). The training pairs are (x, y)
with x = (xrelevant, xirrelevant), i.e., some of the inputs
are irrelevant, not predictive of the target class. Rel-
evant inputs are sampled from a Uniform(0,1) distri-
bution. Irrelevant inputs can either be set to 0 or to
a Uniform(0,1). The number of irrelevant inputs that
is set to 0 varies randomly (uniformly) from example
to example, and can be used to sort examples from
the easiest (with all irrelevant inputs zeroed out) to
the most di�cult (with none of the irrelevant inputs
zeroed out). Another way to sort examples is by the
margin yw

0
x, with easiest examples corresponding to

larger values. The learning rate is 1 (it does not matter
since there is no margin and the classifier output does
not depend on the magnitude of w

0
x but only on its

sign). Initial weights are sampled from a Normal(0,1).
We train the Perceptron with 200 examples (i.e., 200
Perceptron updates) and measure generalization error
at the end. Figure 1 shows average estimated gen-
eralization error measured at the end of training and
averaged across 500 repetitions from di↵erent initial
conditions and di↵erent random sampling of training
examples. We compare a no curriculum setting (ran-
dom ordering), with a curriculum setting in which
examples are ordered by easiness, starting with the
easiest examples, and two easiness criteria (number of
noisy irrelevant inputs, margin yw

0
x). All error rate

di↵erences between the curriculum strategy and the
no-curriculum are statistically significant (di↵erences
of more than .01 were all statistically significant at 5%
under a t-test).

5. Experiments on shape recognition

The task of interest here is to classify geometri-
cal shapes into 3 classes (rectangle, ellipse, trian-
gle), where the input is a 32⇥32 grey-scale image.
As shown in Figure 2, two di↵erent datasets were
generated: whereas GeomShapes data consist in im-
ages of rectangles, ellipses and triangles, BasicShapes

data only include special cases of the above: squares,

Figure 1. Average error rate of Perceptron, with or with-
out the curriculum. Top: the number of nonzero irrelevant
inputs determines easiness. Bottom: the margin yw0x de-
termines easiness.

circles and equilateral triangles. The di↵erence be-
tween BasicShapes data and GeomShapes data is that
BasicShapes images exhibit less variability in shape.
Other degrees of variability which are present in both
sets are the following: object position, size, orienta-
tion, and also the grey levels of the foreground and
background. Besides, some geometrical constraints are
also added so as to ensure that any shape object fits
entirely within the image, and a minimum size and
minimum contrast (di↵erence in grey levels) between
foreground and background is imposed.

Note that the above “easy distribution” occupying a
very small volume in input space compared to the tar-
get distribution does not contradict condition 4. In-
deed, the non-zero weights (on easy examples) can ini-
tially be very small, so that their final weight in the
target distribution can be very small.

Figure 2. Sample inputs from BasicShapes (top) and
GeomShapes (bottom). Images are shown here with a
higher resolution than the actual dataset (32x32 pixels).

The experiments were carried out on a multi-layer neu-
ral network with 3 hidden layers, trained by stochas-

Curriculum Learning

Input Window
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Figure 4. Architecture of the deep neural network comput-
ing the score of the next word given the previous ones.

following ranking loss over sequences s sampled from
a dataset S of valid English text windows:

Cs =
X

w2D

1
|D|Cs,w =

X

w2D

1
|D| max(0, 1�f(s)+f(sw))

(5)
where D is the considered word vocabulary and S
is the set of training word sequences. Note that a
stochastic sample of the gradient with respect to Cs

can be obtained by sampling a counter-example word
w uniformly from D. For each word sequence s we
then compute f(s) and f(sw) and the gradient of
max(0, 1� f(s) + f(sw)) with respect to parameters.

6.1. Architecture

The architecture of our language model (Figure 4)
follows the work introduced by Bengio et al. (2001)
and Schwenk and Gauvain (2002), and closely resem-
bles the one used in Collobert and Weston (2008).
Each word i 2 D is embedded into a d-dimensional
space using a look-up table LTW (·): LTW (i) = Wi ,

where W 2 Rd⇥|D| is a matrix of parameters to
be learnt, Wi 2 Rd is the i

th column of W and
d is the embedding dimension hyper-parameter. In
the first layer an input window {s1, s2, . . . sn} of n

words in D is thus transformed into a series of vectors
{Ws1 , Ws2 , . . . Wsn} by applying the look-up table to
each of its words.

The feature vectors obtained by the look-up table layer
are then concatenated and fed to a classical linear
layer. A non-linearity (like tanh(·)) follows and the
score of the language model is finally obtained after
applying another linear layer with one output.

The cost (5) is minimized using stochastic gradient
descent, by iteratively sampling pairs (s, w) composed
of a window of text s from the training set S and a
random word w, and performing a step in the direction
of the gradient of Cs,w with respect to the parameters,
including the matrix of embeddings W .

Figure 5. Ranking language model trained with vs without
curriculum on Wikipedia. “Error” is log of the rank of the
next word (within 20k-word vocabulary). In its first pass
through Wikipedia, the curriculum-trained model skips ex-
amples with words outside of 5k most frequent words (down
to 270 million from 631 million), then skips examples out-
side 10k most frequent words (doing 370 million updates),
etc. The drop in rank occurs when the vocabulary size
is increased, as the curriculum-trained model quickly gets
better on the new words.

6.2. Experiments

We chose the training set S as all possible win-
dows of text of size n = 5 from Wikipedia
(http://en.wikipedia.org), obtaining 631 million
windows processed as in Collobert and Weston (2008).
We chose as a curriculum strategy to grow the vocabu-
lary size: the first pass over Wikipedia was performed
using the 5, 000 most frequent words in the vocabu-
lary, which was then increased by 5, 000 words at each
subsequent pass through Wikipedia. At each pass, any
window of text containing a word not in the consid-
ered vocabulary was discarded. The training set is
thus increased after each pass through Wikipedia. We
compare against no curriculum, where the network
is trained using the final desired vocabulary size of
20, 000. The evaluation criterion was the average of
the log of the rank of the last word in each test win-
dow, taken in a test set of 10, 000 windows of text not
seen during the training, with words from the most
20, 000 frequent ones (i.e. from the target distribu-
tion). We chose the word embedding dimension to be
d = 50, and the number of hidden units as 100.

In Figure 5, we observe that the log rank on the target

mailto:BoqingGong@gmail.com


 

Curriculum domain 
adaptation

Feed a learning system “easy” tasks first

The solutions to them find good local optima,
acting as an effective regularizer  

Synthetic imagery → Real photos

mailto:BoqingGong@gmail.com


Curriculum domain 
adaptation
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min
⇥

L(Ys, bYs) + d(pt, pt(bYt))

bY

s : Source, t : Target

pt : Perturbation function

Curriculum domain 
adaptation for training CNNs
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Perturbation functions for 
semantic segmentation (1)
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Input: An urban scene image
Algorithm: Logistic regression
Output: Label distributions



Perturbation functions for 
semantic segmentation (2)

Input: An urban scene image
Algorithm: Super-pixel + Logistic regression
Output: Labels of some super-pixels

Road

Sidewalk



Simulation to real world: 
catastrophic performance drop
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Curriculum domain 
adaptation
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Pyramid Curriculum domain 
adaptation
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Simulation to real world: 
closing the performance gap?

0

23

45

68

90

FCN Ours'17 Ours'19 Semi-DA Real2Real

81

5347

29
22



Domain-invariant features
Importance sampling of data
Adapt background models
etc. 

Curriculum domain adaptation 
Style transfer, etc. 

Simulation to reality for segmentation, detection, 
dynamics planning & control, etc.

 

Domain adaptation: key to 
use simulation “for real”
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Domain-invariant features
Importance sampling of data
Adapt background models
etc. 

Curriculum domain adaptation 
Style transfer, etc. 

Simulation to reality for segmentation, detection, 
Dynamics planning & control, etc.

 

Domain adaptation: key to 
use simulation “for real”
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